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COMPARISON PRINCIPLE FOR STOCHASTIC HEAT
EQUATION ON R

d

BY LE CHEN AND JINGYU HUANG

University of Nevada, Las Vegas and University of Utah

We establish the strong comparison principle and strict positivity of so-
lutions to the following nonlinear stochastic heat equation on R

d(
∂

∂t
− 1

2
�

)
u(t, x) = ρ

(
u(t, x)

)
Ṁ(t, x),

for measure-valued initial data, where Ṁ is a spatially homogeneous Gaus-
sian noise that is white in time and ρ is Lipschitz continuous. These results
are obtained under the condition that

∫
Rd (1 + |ξ |2)α−1f̂ (dξ) < ∞ for some

α ∈ (0,1], where f̂ is the spectral measure of the noise. The weak compar-
ison principle and nonnegativity of solutions to the same equation are ob-
tained under Dalang’s condition, that is, α = 0. As some intermediate results,
we obtain handy upper bounds for Lp(�)-moments of u(t, x) for all p ≥ 2,
and also prove that u is a.s. Hölder continuous with order α − ε in space and
α/2 − ε in time for any small ε > 0.

1. Introduction. In this paper, we study the sample-path comparison princi-
ple, or simply comparison principle of the solutions to the following stochastic
heat equation (SHE) with rough initial conditions:⎧⎪⎨⎪⎩

(
∂

∂t
− 1

2
�

)
u(t, x) = ρ

(
u(t, x)

)
Ṁ(t, x) x ∈ R

d t > 0,

u(0, ·) = μ(·).
(1.1)

In this equation, ρ is assumed to be a globally Lipschitz continuous function. The
linear case, that is, ρ(u) = λu, is called the parabolic Anderson model (PAM) [3].
The noise Ṁ is a Gaussian noise that is white in time and homogeneously colored
in space. Informally,

E
[
Ṁ(t, x)Ṁ(s, y)

] = δ0(t − s)f (x − y),

where δ0 is the Dirac delta measure with unit mass at zero and f is a “correla-
tion function” that is, a nonnegative and nonnegative definite function that is not
identically zero. The Fourier transform of f is denoted by f̂

f̂ (ξ) = Ff (ξ) =
∫
Rd

exp(−iξ · x)f (x)dx.
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In general, f̂ is again a nonnegative and nonnegative definite measure, which is
usually called the spectral measure. The precise meaning of the “rough initial con-
ditions/data” are specified as follows. We first note that by the Jordan decomposi-
tion, any signed Borel measure μ can be decomposed as μ = μ+ − μ− where μ±
are two nonnegative Borel measures with disjoint support. Denote |μ| := μ++μ−.
The rough initial data refers to any signed Borel measure μ such that∫

Rd
e−a|x|2 |μ|(dx) < +∞ for all a > 0,(1.2)

where |x| =
√

x2
1 + · · · + x2

d denotes the Euclidean norm. It is easy to see that
condition (1.2) is equivalent to the condition that the solution to the homogeneous
equation—J0(t, x) defined in (1.6) below—exists for all t > 0 and x ∈ R

d .
The comparison principle refers to the property that if two initial conditions

are ordered, then the corresponding solutions to the stochastic partial differential
equations are also ordered. For any Borel measure μ on R

d , “μ ≥ 0” has its ob-
vious meaning that μ is a nonnegative measure and “μ > 0” refers to the fact that
μ ≥ 0 and μ is nonvanishing, that is, μ �= 0. Let u1 and u2 be two solutions starting
from two measures μ1 and μ2, respectively. We say that (1.1) satisfies the weak
comparison principle if u1(t, x) ≤ u2(t, x) a.s. for all t > 0 and x ∈ R

d whenever
μ1 ≤ μ2. Similarly, we say that (1.1) satisfies the strong comparison principle if
u1(t, x) < u2(t, x) for all t > 0 and x ∈ R

d a.s. whenever μ1 < μ2. Note that
when ρ(u) = λu, it is relatively easier to establish the weak comparison principle
since the solution can be approximated by its regularized version, which admits a
Feynman–Kac formula; see [15, 16, 18].

Most strong comparison principles are obtained through Mueller’s original
work [20], where he proved the case when d = 1, Ṁ is the space-time white noise,
ρ(u) = |u|γ (for all γ ≤ 1), and the initial data is a bounded function. In [23],
Shiga studied the same equation as that in [20] except that ρ is assumed to be
Lipschitz and there can be a drift term. By using concentration of measure argu-
ments for discrete directed polymers in Gaussian environments, Flores established
in [19] the strict positivity of solution to 1-d PAM with Dirac delta initial data.
Following arguments by Mueller and Shiga, Chen and Kim extended these results
in [7] to allow both fractional Laplace operators and rough initial data. Recently,
by using paracontrolled distributions, Gubinelli and Perkowski gave an intrinsic
proof of the strict positivity; see [14]. Their proof does not depend on the details
of noise, though they require the initial data to be a function that is strict positive
anywhere.

When d ≥ 2, in order to study a random field solution, the noise has to be
colored in space, where “colored” means “correlated.” Equation (1.1) has been
much studied since the introduction by Dawson and Salehi [12] as a model for the
growth of a population in a random environment. In [10, 11], it is shown that if the
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initial condition is a bounded function, and under some integrability condition on
f̂ , now called Dalang’s condition, that is,

ϒ(β) := (2π)−d
∫
Rd

f̂ (dξ)

β + |ξ |2
(1.3)

< +∞ for some and hence for all β > 0,

there is a unique random field solution to equation (1.1). This equation has been
extensively studied; see, for example, [6, 13, 15, 18]. Recently, Chen and Kim
showed that Dalang’s condition (1.3) also guarantees an L2(�)-continuous ran-
dom field solution starting from rough initial conditions; see [8]. To the best of our
knowledge, comparison principle in this setting is much less known, though peo-
ple believe that it is true. In [24], Tessitore and Zabczyk proved the strict positivity
for the case when f̂ belongs to Lp(Rd) for some p ∈ [1, d/(d − 2)). Clearly,
this condition excludes the important Riesz kernel case, that is, f (x) = |x|−β

with β ∈ (0,2 ∧ d). Indeed, we will show that under Dalang’s condition (1.3),
if ρ(0) = 0, then the solution u(t, x) starting from any nonnegative rough initial
data is a.s. nonnegative for any t > 0 and x ∈ R

d . Moreover, if the nonnegative
rough initial data is nonvanishing and f satisfies∫

Rd

f̂ (dξ)

(1 + |ξ |2)1−α
< ∞ for some α ∈ (0,1],(1.4)

then we are able to establish the strict positivity of u(t, x) through the following
small-ball probability estimate:

P
(
u(t, x) < ε

) ≤ A exp
(−A| log ε|α(

log | log ε|)1+α)
.

Similar small-ball probabilities in various settings can be found in [7, 9, 19, 21].
These nonnegativity statements can be translated into comparison statements by
considering v = u1 − u2.

Condition (1.4) is natural since in a recent paper [6], it is shown that Dalang’s
condition (1.3) alone cannot guarantee the existence of a continuous version of
the solution. There might be solutions that behave so badly that they may hit zero.
Whether this phenomenon does happen is still not clear to us and it is left for future
exploration. For the moment, we are content with this slightly stronger condition
(1.4). Indeed, if the initial condition is a bounded function, Sanz-Solé and Sarrà
[22] showed that condition (1.4) guarantees that the solution is a.s. Hölder contin-
uous with order α − ε in space and α/2 − ε in time for any small ε > 0. In this
paper, we have extended this result for rough initial conditions. The space-time
white noise case is proved in [4].

In all these studies, the moment bounds/formulas play an important role. The
upper bounds for the second moments under Dalang’s condition (1.3) for rough
initial conditions is obtained in [8]. In this paper, we extend this bound to obtain
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similar upper bounds for all pth moments, p ≥ 2. Using these moments upper
bounds, we establish the (weak) comparison principle. Note that similar moment
upper bounds have also been recently obtained by the second author [17]. By con-
trast, the major effort of [8] is to obtain some nontrivial lower bounds for the
second moments. Note when ρ(u) = λu, the pth moment admits a Feynman–Kac
representation, which has been exploited to study the intermittency phenomenon
in [15, 16, 18].

In the rest of this Introduction, we will first give the precise definition of the
solution and recall the existence/uniqueness result in Section 1.1. The main re-
sults are stated in Section 1.2. Then we give an outline of the rest of the paper in
Section 1.3.

1.1. Definition and existence of a solution. Recall that a spatially homoge-
neous Gaussian noise that is white in time is an L2(�)-valued mean zero Gaussian
process on a complete probability space (�,F,P){

F(ψ) : ψ ∈ C∞
c

([0,∞) ×R
d)}

,

such that

E
[
F(ψ)F (φ)

] =
∫ ∞

0
ds

∫∫
R2d

ψ(s, x)φ(s, y)f (x − y)dx dy.

Let Bb(R
d) be the collection of Borel measurable sets with finite Lebesgue mea-

sure. As in Dalang–Walsh theory [10, 25], one can extend F to a σ -finite L2(�)-
valued martingale measure B �→ F(B) defined for B ∈ Bb(R+ × R

d), where
R+ := [0,∞). Then define

Mt(B) := F
([0, t] × B

)
, B ∈ Bb

(
R

d)
.

Let (Ft , t ≥ 0) be the natural filtration generated by M·(·) and augmented by all
P-null sets N in F , that is,

Ft := σ
(
Ms(A) : 0 ≤ s ≤ t,A ∈ Bb

(
R

d)) ∨N , t ≥ 0.

Then for any adapted, jointly measurable (with respect to B((0,∞) × R
d) × F )

random field {X(t, x) : t > 0, x ∈R
d} such that for all integers p ≥ 2,∫ ∞

0
ds

∫∫
R2d

dx dy
∥∥X(s, y)X(s, x)

∥∥p
2
f (x − y) < ∞,

the stochastic integral ∫ ∞
0

∫
Rd

X(s, y)M(ds,dy)

is well defined in the sense of Dalang–Walsh. Here, we only require the joint-
measurability instead of predictability; see Proposition 2.2 in [8] for this case or
Proposition 3.1 in [5] for the space-time white noise case. Throughout this paper,
‖ · ‖p denotes the Lp(�)-norm.
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The solution to (1.1) is understood in the mild form

u(t, x) = J0(t, x) +
∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
u(s, y)

)
M(ds,dy).(1.5)

Here, J0(t, x) denotes the solution to the homogeneous equation

J0(t, x) := (
μ ∗ G(t, ·))(x) :=

∫
Rd

G(t, x − y)μ(dy),(1.6)

where

G(t, x) = (2πt)−d/2 exp
(
−|x|2

2t

)
.(1.7)

Denote

I (t, x) :=
∫∫

[0,t]×Rd
G(t − s, x − y)ρ

(
u(s, y)

)
M(ds,dy).

The above stochastic integral is understood in the sense of Walsh [10, 25].

DEFINITION 1.1. A process u = (u(t, x), (t, x) ∈ (0,∞) × R
d) is called a

random field solution to (1.1) if:

(1) u is adapted, that is, for all (t, x) ∈ (0,∞) ×R
d , u(t, x) is Ft -measurable;

(2) u is jointly measurable with respect to B((0,∞) ×R
d) ×F ;

(3) ‖I (t, x)‖2 < +∞ for all (t, x) ∈ (0,∞) ×R
d ;

(4) I is L2(�)-continuous, that is, the function (t, x) �→ I (t, x) mapping
(0,∞) ×R

d into L2(�) is continuous;
(5) u satisfies (1.5) a.s., for all (t, x) ∈ (0,∞) ×R

d .

Definition 1.1 does not require a random field solution to have a pathwise con-
tinuous version. The L2(�)-continuity in condition (4) is a much weaker condition
than the condition of having continuous sample path. Actually, one can construct
a discontinuous solution as in [6]. On the other hand, from Definition 1.1 one can
find sufficient conditions for both the admissible initial data and the admissible
correlation function f , which is the content of the following theorem.

THEOREM 1.2 (Theorem 2.4 in [8]). If the initial data μ satisfies (1.2), then
under Dalang’s condition (1.3), SPDE (1.1) has a unique (in the sense of versions)
random field solution {u(t, x) : t > 0, x ∈ R

d} starting from μ. This solution is
L2(�)-continuous.

The existence of the random field solution (except the L2(�)-continuity) has
also been obtained recently by the second author in [17]. Note that the L2(�)-
continuity that comes with Theorem 1.2 is too weak to be useful in this paper.
When we need the pathwise continuity, we will instead work under a stronger
condition—(1.4)—than Dalang’s condition (1.3).
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1.2. Statements of the main results. We will prove seven theorems as follows.

THEOREM 1.3 (Weak comparison principle). Assume that f satisfies Dalang’s
condition (1.3). Let u1 and u2 be two solutions to (1.1) with the initial measures
μ1 and μ2 that satisfy (1.2), respectively. If μ1 ≤ μ2, then

(1.8) P
(
u1(t, x) ≤ u2(t, x)

) = 1 for all t ≥ 0 and x ∈R
d .

Moreover, if the paths of u1(t, x) and u2(t, x) are a.s. continuous, then

(1.9) P
(
u1(t, x) ≤ u2(t, x) for all t ≥ 0 and x ∈ R

d) = 1.

If ρ(0) = 0, then u ≡ 0 is the unique solution to (1.1) starting from μ = 0.
Hence, we have the following corollary.

COROLLARY 1.4 (Nonnegativity). Assume that f satisfies Dalang’s condi-
tion (1.3) and ρ(0) = 0. Let u be the solution to (1.1) with the initial measure μ

that satisfies (1.2). If μ ≥ 0, then

(1.10) P
(
u(t, x) ≥ 0

) = 1 for all t ≥ 0 and x ∈ R
d .

Moreover, if the path of u(t, x) are a.s. continuous, then

(1.11) P
(
u(t, x) ≥ 0 for all t ≥ 0 and x ∈ R

d) = 1.

THEOREM 1.5 (Strong comparison principle). Assume that f satisfies (1.4)
for some α ∈ (0,1]. Let u1 and u2 be two (continuous versions of the) solutions to
(1.1) with the initial data μ1 and μ2, respectively. Then the fact μ1 < μ2 implies

(1.12) P
(
u1(t, x) < u2(t, x) for all t > 0 and x ∈ R

d) = 1.

Note that by Theorem 1.8 below, under the assumptions of Theorem 1.5, the
solution to (1.1) has a continuous version.

THEOREM 1.6 (Strict positivity). Assume that f satisfies (1.4) for some α ∈
(0,1] and ρ(0) = 0. Let u be the solution to (1.1) with initial measure μ > 0 that
satisfies (1.2). Then for any compact set K ⊂ (0,∞) × R

d , there exists a finite
constant A > 0 which only depends on K such that for all ε > 0 small enough,

(1.13) P

(
inf

(t,x)∈K
u(t, x) < ε

)
≤ A exp

(−A| log ε|α(
log | log ε|)1+α)

.

In order to establish the above results, we need to prove the following four
theorems, which are of interest by themselves. The first result is a general moment
bound. This provides us with a very handy tool in studying various properties of
the solution to (1.1). This result extends the previous work [8] from the two-point
correlation function to higher moments. Let Lipρ > 0 be the Lipschitz constant
for ρ. See Section 2 for the proof.
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THEOREM 1.7 (Moment bounds). Under Dalang’s condition (1.3), if the ini-
tial data μ is a signed measure that satisfies (1.2), then the solution u to (1.1) for
any given t > 0 and x ∈ R

d is in Lp(�), p ≥ 2, and∥∥u(t, x)
∥∥
p ≤ [

ς + √
2

(|μ| ∗ G(t, ·))(x)
]
H(t;γp)1/2,(1.14)

where ς = |ρ(0)|/Lipρ and γp = 32p Lip2
ρ and H(t;γp) is defined in (2.4) below.

Moreover, if for some α ∈ (0,1] condition (1.4) is satisfied, then when p ≥ 2 is
large enough, there exists some constant C > 0 such that∥∥u(t, x)

∥∥
p ≤ C

[
ς + (|μ| ∗ G(t, ·))(x)

]
exp

(
C Lip2/α

ρ p1/αt
)
.(1.15)

The second result is about the sample-path regularity under (1.4) for rough ini-
tial data. This result is used to obtain a large deviation estimates in proving the
strong comparison principle. See Section 3 for its proof.

THEOREM 1.8 (Hölder regularity). Suppose that μ is any measure that sat-
isfies (1.2) and f satisfies (1.4) for some α ∈ (0,1]. Then the solution to (1.1)
starting from μ has a version which is a.s. β1-Hölder continuous in time and β2-
Hölder continuous in space on (0,∞) ×R

d for all

β1 ∈ (0, α/2) and β2 ∈ (0, α).

The third theorem consists of two approximation results, which are used to es-
tablish the weak comparison principle. The first one says that we can approximate
a solution starting from rough initial data by solutions starting from smooth and
bounded initial conditions. This result allows us to pass from the weak compari-
son principle for L∞(Rd)-valued initial data to that for rough initial data. In the
second approximation, we mollify the noise and establish an uniform L2(�)-limit.
See Section 4 for the proof.

THEOREM 1.9 (Two approximations). Assume that f satisfies Dalang’s con-
dition (1.3).

(1) Suppose that the initial measure μ satisfies (1.2). If u and uε are the solu-
tions to (1.1) starting from μ and ((μψε) ∗ G(ε, ·))(x), respectively, where

ψε(x) = 1{|x|≤1/ε} + (
1 + 1/ε − |x|)1{1/ε<|x|≤1+1/ε},(1.16)

then

lim
ε→0+

∥∥u(t, x) − uε(t, x)
∥∥

2 = 0 for all t > 0 and x ∈ R
d .

(2) Let φ be any continuous, nonnegative and nonnegative definite function on
R

d with compact support such that
∫
Rd φ(x)dx = 1. Let u be the solution to (1.1)
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starting from bounded initial data, that is, μ(dx) = g(x)dx with g ∈ L∞(Rd). If
ũε is the solution to the following mollified equation

(1.17)
∂

∂t
ũε(t, x) = 1

2
�ũε(t, x) + ρ

(
ũε(t, x)

)
Ṁε(t, x),

with the same initial condition ũε(0, ·) = μ as u, where

(1.18) Mε(ds,dx) =
∫
Rd

φε(x − y)M(ds,dy)dx,

and φε(x) = ε−dφ(x/ε), then

lim
ε→0+

sup
x∈Rd

∥∥u(t, x) − ũε(t, x)
∥∥

2 = 0 for all t > 0.(1.19)

REMARK 1.10. One can always find one example of such function φ in part
(2) of Theorem 1.9, for example, φ(x) = ∏d

i=1(1 − |xi |)1{|xi |≤1} whose Fourier
transform is nonnegative: φ̂(ξ) = 2d ∏d

j=1 ξ−2
j (1 − cos(ξj )) ≥ 0.

The last result shows that the solution u(t, x) to (1.1) converges to its initial
data μ weakly as t → 0. This result is used to establish the strong comparison
principle for measure-valued initial data given that for function-valued initial data.
See Section 5 for the proof. Let Cc(R

d) be the set of continuous functions with
compact support.

THEOREM 1.11. Under Dalang’s condition (1.3), if u is the solution to (1.1)
starting from a measure μ that satisfies (1.2), then, for all φ ∈ Cc(R

d),

lim
t→0

∫
Rd

u(t, x)φ(x)dx =
∫
Rd

φ(x)μ(dx) in L2(�).(1.20)

Finally, let us give some more explanations on the reason that we need to work
under the stronger condition (1.4) instead of Dalang’s condition (1.3). Actually, as
one can see, Lemma 7.2 below will play a key role in the proof of the main result—
the strong comparison principle. This lemma tells us that for small time step, that
is, for large m, with high probability the solution in one time step will not change
too much. (Then one can argue using the Markov property that if the initial data
is positive somewhere, this property can be propagated to the whole space-time
plane.) Hence, this kind of result (Lemma 7.2) has to do with the regularity of the
solution. Indeed, the proof of Lemma 7.2, as one can see, consists of an optimiza-
tion of two competing terms, one from the moment growth rate (Theorem 1.7) and
the other from the Hölder continuity (Theorem 1.8). Under (1.3), the dependence
on p in (1.14) is implicit, while under (1.4) it becomes explicit, and hence very
easy to handle. However, this is not the reason why we assume (1.4). As shown
in [6], under (1.3) alone one can construction a densely blow-up solution, that is,
for any small time step, the solution may have a drastic change. To avoid such



COMPARISON PRINCIPLE FOR SHE ON R
d 997

undesirable behavior, one has to use a stronger condition than Dalang’s condition
(1.3). Condition (1.4) turns out to be both general enough (which can cover the
Riesz kernel case) and very convenient, and most of all, it guarantees a pathwise
continuous solution.

1.3. Outline of the paper. This paper is organized as follows: We first prove
the moment bounds, Theorem 1.7, in Section 2. Using these moment bounds, we
proceed to establish the Hölder regularity, Theorem 1.8, in Section 3. Then in
Section 4, we prove Theorem 1.9 for the two approximations. The weak limit as t

goes to zero, that is, Theorem 1.11, is proved in Section 5. With this preparation,
we prove the weak comparison principle, Theorem 1.3, in Section 6. Finally, in
Section 7 we prove both the strong comparison principle (Theorem 1.5) and the
strict positivity (Theorem 1.6). Some technical lemmas are given in the Appendix.
Throughout this paper, C will denote a generic constant which may vary at each
occurrence.

2. Moment bounds (Proof of Theorem 1.7). We first introduce some nota-
tion following [8]. Denote

k(t) :=
∫
Rd

f (z)G(t, z)dz.(2.1)

By the Fourier transform, this function can be written in the following form:

k(t) := (2π)−d
∫
Rd

f̂ (dξ) exp
(
− t |ξ |2

2

)
.(2.2)

Define h0(t) := 1 and for n ≥ 1,

hn(t) =
∫ t

0
dshn−1(s)k(t − s).(2.3)

Let

H(t;γ ) :=
∞∑

n=0

γ nhn(t) for all γ ≥ 0.(2.4)

This function is defined through the correlation function f . The following lemma
tells us that this function has an exponential bound.

LEMMA 2.1 (Lemma 2.5 in [8] or Lemma 3.8 in [2]). For all t ≥ 0 and γ ≥ 0,
recalling that ϒ(β) is defined in (1.3), it holds that

lim sup
t→∞

1

t
logH(t;γ ) ≤ inf

{
β > 0 : ϒ(2β) <

1

2γ

}
.(2.5)
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The following lemma will play a key role in our Picard iteration to obtain the
upper bounds for the pth moment. Interested readers may want to compare it with
Lemma A.1 below. While Lemma A.1 is appropriate for dealing with the two-
point correlation function, the corresponding recursion for the p-point (p > 2)

correlation function will be much more complicated. Instead if one only needs
some upper bounds for the pth moment, the following lemma will do the job.

LEMMA 2.2. Suppose that μ is a signed measure that satisfies (1.2) and recall
that J0(t, x) is the solution to the homogeneous equation (see (1.6)). If a nonneg-
ative (measurable) function g : R+ × R

d �→ R+ satisfies that for all t > 0 and
x ∈ R

d , ∫ t

0
ds

∫∫
R2d

G(t − s, x − y1)G(t − s, x − y2)

× f (y1 − y2)g(s, y1)g(s, y2)dy1 dy2 < +∞
and

g(t, x)2 ≤ J 2
0 (t, x) + λ2

∫ t

0
ds

∫∫
R2d

G(t − s, x − y1)G(t − s, x − y2)

× f (y1 − y2)g(s, y1)g(s, y2)dy1 dy2,

(2.6)

then

g(t, x) ≤ (|μ| ∗ G(t, ·))(x)H
(
t;2λ2)1/2

.(2.7)

PROOF. We prove this lemma using Picard iteration. We need only to prove
the case when the inequality in (2.2) is an equality. Let

g0(t, x) = (|μ| ∗ G(t, ·))(x),

and for n ≥ 1,

g2
n(t, x) = J 2

0 (t, x) + λ2
∫ t

0
ds

∫∫
R2d

G(t − s, x − y1)G(t − s, x − y2)

(2.8)
× gn−1(s, y1)gn−1(s, y2)f (y1 − y2)dy1 dy2.

For γ = 2λ2, we claim that

gn(t, x) ≤ g0(t, x)

(
n∑

i=0

γ ihi(t)

)1/2

for all n ≥ 0.(2.9)

It is clear that (2.9) holds for n = 0. Suppose that (2.9) is true for n ≥ 0. Notice
that

g2
n+1(t, x) = J 2

0 (t, x) + λ2
∫ t

0

∫∫
R2d

G(t − s, x − y1)G(t − s, x − y2)f (y1 − y2)

× gn(s, y1)gn(s, y2)ds dy1 dy2

=: J 2
0 (t, x) + λ2I (t, x).
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By the induction assumption,

I (t, x) ≤
∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)G(t − s, x − y1)G(t − s, x − y2)

× ∣∣J0(s, y1)
∣∣∣∣J0(s, y2)

∣∣( n∑
i=0

γ ihi(s)

)

=
∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)G(t − s, x − y1)G(t − s, x − y2)

×
∫∫

R2d
|μ|(dz1)|μ|(dz2)G(s, y1 − z1)G(s, y2 − z2)

(
n∑

i=0

γ ihi(s)

)
.

Because (see [5], Lemma 5.4)

G(s, x)G(t − s, y) = G

(
s(t − s)

t
,
sy − (t − s)x

t

)
G(t, x + y),(2.10)

we see that

G(t − s, x − y1)G(s, y1 − z1)

= G(t, x − z1)G

(
s(t − s)

t
, y1 − z1 − s

t
(x − z1)

)
.

Hence,

I (t, x) ≤
∫ t

0
ds

(
n∑

i=0

γ ihi(s)

) ∫∫
R2d

dy1 dy2f (y1 − y2)

× G

(
s(t − s)

t
, y1 − z1 − s

t
(x − z1)

)
× G

(
s(t − s)

t
, y2 − z2 − s

t
(x − z2)

)
×

∫∫
R2d

|μ|(dz1)|μ|(dz2)G(t, x − z1)G(t, x − z2).

By the Fourier transform, the above double integral dy1 dy2 is equal to

(2π)−d
∫
Rd

f̂ (dξ) exp
(
i
t − s

t
(z1 − z2) · ξ − s(t − s)

t
|ξ |2

)
.

Since f̂ is nonnegative, this integral is bounded by

(2π)−d
∫
Rd

f̂ (dξ) exp
(
−s(t − s)

t
|ξ |2

)
.

Hence,

I (t, x) ≤ g2
0(t, x)

∫ t

0
ds

(
n∑

i=0

γ ihi(s)

)
(2π)−d

∫
Rd

f̂ (dξ) exp
(
−s(t − s)

t
|ξ |2

)
.
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Then using the fact that t → hi(t) is nondecreasing (see Lemma 2.6 in [8]), by
Lemma B.1 with β = |ξ |2/2, we see that

I (t, x) ≤ 2g2
0(t, x)

∫ t

0
ds

(
n∑

i=0

γ ihi(s)

)
(2π)−d

∫
Rd

f̂ (dξ) exp
(
− t − s

2
|ξ |2

)
.

Then by (2.2) and (2.3), we see that

I (t, x) ≤ 2g2
0(t, x)

∫ t

0
ds

(
n∑

i=0

γ ihi(s)

)
k(t − s) = 2g2

0(t, x)

n∑
i=0

γ ihi+1(t).

Therefore,

g2
n+1(t, x) ≤ g2

0(t, x) + 2λ2g2
0(t, x)

n∑
i=0

γ ihi+1(t) ≤ J 2
0 (t, x)

n+1∑
i=0

γ ihi(t).

This proves (2.9). Finally,

g(t, x) ≤ lim
n→∞g0(t, x)

(
n∑

i=0

γ ihi(t)

)1/2

= g0(t, x)

( ∞∑
i=0

γ ihi(t)

)1/2

,

which completes the proof of Lemma 2.2. �

PROOF OF THEOREM 1.7. The unique solution in L2(�) has been established
in [8]. We will prove the moment bounds in three steps.

Step 1. Now we prove this moment bound using Picard iteration. Let

u0(t, x) = J0(t, x),

and for n ≥ 1,

un(t, x) = J0(t, x) +
∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
un−1(s, y)

)
M(ds,dy).(2.11)

Since ρ is Lipschitz, by denoting ς = |ρ(0)|/Lipρ ,∥∥ρ(X)
∥∥
p ≤ Lipρ

∥∥ς + |X|∥∥p ≤ Lipρ

√
2

(
ς2 + ‖X‖2

p

)
.

Because by the Burkholder–Davis–Gundy inequality and linear growth condition
of ρ,

ς2 + ∥∥un+1(t, x)
∥∥2
p

≤ ς2 + 2J 2
0 (t, x) + 8p

∫ t

0

∫∫
R2d

G(t − s, x − y1)G(t − s, x − y2)

× f (y1 − y2)
∥∥ρ

(
un(s, y1)

)∥∥
p

∥∥ρ
(
un(s, y2)

)∥∥
p ds dy1 dy2

≤ ς2 + 2J 2
0 (t, x) + 16p Lip2

ρ

∫ t

0

∫∫
R2d

G(t − s, x − y1)G(t − s, x − y2)

× f (y1 − y2)

√
ς2 + ∥∥un(s, y1)

∥∥2
p

√
ς2 + ∥∥un(s, y2)

∥∥2
p ds dy1 dy2,
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we can apply the same induction arguments as those in the proof of Lemma 2.2

with λ2 = 16p Lip2
ρ and gn(t, x) =

√
ς2 + ‖un(t, x)‖2

p and J0(t, x) replaced by

ς + √
2J0(t, x) to conclude that for all n ≥ 0,

∥∥un(t, x)
∥∥
p ≤

√
ς2 + ∥∥un(t, x)

∥∥2
p

≤ √
2

(
ς + √

2
(|μ| ∗ G(t, ·))(x)

)(
n∑

i=0

(
32p Lip2

ρ

)i
hi(t)

)1/2

.

(2.12)

Step 2. In this step, we will show that {un(t, x), n ∈ N} defined in (2.11) is a
Cauchy sequence in Lp(�). Without loss of generality, we may assume that μ ≥ 0,
otherwise one may simply replace μ by |μ| at each occurrence of μ. This will then
imply the moment bound in (1.14). Denote

Fn(t, x) = ∥∥un+1(t, x) − un(t, x)
∥∥
p.

Then

F 2
n (t, x) ≤ 8p Lip2

ρ

∫ t

0
ds

∫∫
R2d

dy1 dy2G(t − s, x − y1)G(t − s, x − y2)

× f (y1 − y2)Fn−1(s, y1)Fn−1(s, y2),

for n ≥ 1, and

F 2
0 (t, x) = ∥∥u1(t, x) − J0(t, x)

∥∥2
p

≤ 8p Lip2
ρ

∫ t

0
ds

∫∫
R2d

dy1 dy2G(t − s, x − y1)G(t − s, x − y2)

× f (y1 − y2)J0(s, y1)J0(s, y2).

Then by setting F−1(t, x) := J0(t, x) and γ = 16p Lip2
ρ , one can apply the same

induction arguments in the proof of Lemma 2.2 to conclude that

∞∑
n=0

Fn(t, x) ≤ J0(t, x)

( ∞∑
i=0

γ ihi(t)

)1/2

< ∞.

Therefore, {un(t, x), n ∈N} is a Cauchy sequence in Lp(�) and∥∥u(t, x)
∥∥
p = lim

n→∞
∥∥un(t, x)

∥∥
p

≤ lim
n→∞

(
ς + √

2J0(t, x)
)(

n∑
i=0

(
32p Lip2

ρ

)i
hi(t)

)1/2

= (
ς + √

2J0(t, x)
)
H

(
t;32p Lip2

ρ

)1/2
< ∞.

This proves (1.14).
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Step 3. In this step, we will prove (1.15). Notice that in this case for β > 0,

ϒ(β) = (2π)−d
∫
Rd

1

(β + |ξ |2)α
f̂ (dξ)

(β + |ξ |2)1−α

≤ C

βα

(∫
|ξ |≤1

f̂ (dξ)

β1−α
+

∫
|ξ |>1

f̂ (dξ)

|ξ |2(1−α)

)

≤ C

(
1

β
+ 1

βα

)
.

From now on fix the constant C on the right-hand side of the above inequalities. If
p is large enough such that 32p Lip2

ρ C > 1, then

C

(
1

β
+ 1

βα

)
≤ 1

32p Lip2
ρ

⇐= 2C

βα
≤ 1

32p Lip2
ρ

⇐⇒ β ≥ (
C64p Lip2

ρ

)1/α =: βp.

Then an application of Lemma 2.1 shows that

lim sup
t→∞

1

t
logH

(
t;32p Lip2

ρ

) ≤ βp.

Hence, the function e−βptH(t;32p Lip2
ρ) is a continuous function on [0,∞].

Therefore, for some constant C′ > 0, e−βptH(t;32p Lip2
ρ) ≤ C ′ for all t ≥ 0. This

proves (1.15) and also completes the whole proof of Theorem 1.7. �

3. Hölder regularity (Proof of Theorem 1.8). We first prove the following
lemma.

LEMMA 3.1. For all α ∈ (0,1], x, y ∈ R
d and t ′ ≥ t > 0, we have that∣∣G(t, x) − G(t, y)

∣∣ ≤ C

tα/2

[
G(2t, x) + G(2t, y)

]|x − y|α(3.1)

and ∣∣G(t, x) − G
(
t ′, x

)∣∣ ≤ Ct−α/2G
(
4t ′, x

)(
t ′ − t

)α/2
.(3.2)

PROOF. By the scaling property, for (3.1), it suffices to prove that∣∣G(1, x) − G(1, y)
∣∣ ≤ C

[
G(2, x) + G(2, y)

]|x − y|α.

We may assume that |x| ≤ |y|. Choosing x̄ ∈ R
d such that |x̄| = |x| and y = ax̄

for some a ≥ 1, that is, x̄, y and the origin are on the same line. By the mean value
theorem, for some c ∈ [0,1] and ξ = cx̄ + (1 − c)y,∣∣G(1, x) − G(1, y)

∣∣ = ∣∣G(1, x̄) − G(1, y)
∣∣

≤ G(1, ξ)|ξ ||x̄ − y|
≤ CG(2, ξ)|x̄ − y|.
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Then by the choice of x̄ we see that

G(2, ξ)|x̄ − y| ≤ C
[
G(2, x̄) + G(2, y)

]|x̄ − y|
≤ C

[
G(2, x) + G(2, y)

]|x − y|.
Therefore,∣∣G(1, x) − G(1, y)

∣∣
= ∣∣G(1, x) − G(1, y)

∣∣α∣∣G(1, x) − G(1, y)
∣∣1−α

≤ C
[
G(2, x) + G(2, y)

]α|x − y|α∣∣G(2, x) + G(2, y)
∣∣1−α

= C
[
G(2, x) + G(2, y)

]|x − y|α,

where we have applied the inequality that is just obtained to the factor |G(1, x) −
G(1, y)|α and we have used the fact 0 < G(1, x) ≤ CG(2, x) for the other factor.
This proves (3.1).

As for (3.2), notice that∣∣G(t, x) − G
(
t ′, x

)∣∣
≤ (2π)−d/2∣∣t−d/2 − (

t ′
)−d/2∣∣e−|x|2

2t + (2π)−d/2(
t ′

)−d/2∣∣e−|x|2
2t − e

−|x|2
2t ′

∣∣
= td/2∣∣t−d/2 − (

t ′
)−d/2∣∣G(t, x) + (

t ′
)−d/2

∣∣∣∣G(
1,

x√
t

)
− G

(
1,

x√
t ′

)∣∣∣∣.
For any γ ∈ (0,1), because t ′ > t ,∣∣t−d/2 − (

t ′
)−d/2∣∣ = ∣∣t−d/2 − (

t ′
)−d/2∣∣1−γ ∣∣t−d/2 − (

t ′
)−d/2∣∣γ

≤ C
[
2t−d/2]1−γ [(

t−d/2−1 + (
t ′

)−d/2−1)∣∣t − t ′
∣∣]γ(3.3)

≤ Ct−d/2−γ
∣∣t − t ′

∣∣γ .

By (3.1), for all α ∈ (0,1],∣∣∣∣G(
1,

x√
t

)
− G

(
1,

x√
t ′

)∣∣∣∣
≤ C

[
G

(
2,

x√
t

)
+ G

(
2,

x√
t ′

)]
|x|α∣∣t−1/2 − (

t ′
)−1/2∣∣α

≤ CG

(
2,

x√
t ′

)
|x|α∣∣t−1/2 − (

t ′
)−1/2∣∣α

= C
(
t ′

)d/2
G

(
2t ′, x

)|x|α∣∣t−1/2 − (
t ′

)−1/2∣∣α.

By the concavity of the square root, we see that

∣∣t−1/2 − (
t ′

)−1/2∣∣ =
√

t ′ − √
t√

t t ′
≤

√
t ′ − t√
t t ′

.
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Hence,∣∣∣∣G(
1,

x√
t

)
− G

(
1,

x√
t ′

)∣∣∣∣ ≤ Ct−α/2(
t ′

)(d−α)/2
G

(
2t ′, x

)|x|α(
t ′ − t

)α/2

≤ Ct−α/2(
t ′

)d/2
G

(
4t ′, x

)(
t ′ − t

)α/2
.

The bound in (3.2) is proved by taking γ = α/2 in (3.3) and using the fact that
G(t, x) ≤ CG(4t ′, x). This completes the proof of Lemma 3.1. �

PROOF OF THEOREM 1.8. Denote the stochastic integral in (1.5) by I(t, x).
Set ς = |ρ(0)|/Lipρ . We need only to prove the Hölder regularity for I(t, x). Fix
n > 1. For all (t, x) and (t ′, x′) ∈ [1/n,n] ×R

d with t ′ > t , we see that∥∥I(t, x) − I
(
t ′, x′)∥∥2

p ≤ CI1
(
t, x, x′) + CI2

(
t, t ′, x′) + CI3

(
t, t ′, x′),

where

I1
(
t, x, x′) =

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

× ∣∣G(t − s, x − y1) − G
(
t − s, x′ − y1

)∣∣√ς2 + ∥∥u(s, y1)
∥∥2
p(3.4)

× ∣∣G(t − s, x − y2) − G
(
t − s, x′ − y2

)∣∣√ς2 + ∥∥u(s, y2)
∥∥2
p,

I2
(
t, t ′, x′) =

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

× ∣∣G(
t − s, x′ − y1

) − G
(
t ′ − s, x′ − y1

)∣∣√ς2 + ∥∥u(s, y1)
∥∥2
p(3.5)

× ∣∣G(
t − s, x′ − y2

) − G
(
t ′ − s, x′ − y2

)∣∣√ς2 + ∥∥u(s, y2)
∥∥2
p

and

I3
(
t, t ′, x′) =

∫ t ′

t
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

× G
(
t ′ − s, x′ − y1

)√
ς2 + ∥∥u(s, y1)

∥∥2
p

× G
(
t ′ − s, x′ − y2

)√
ς2 + ∥∥u(s, y2)

∥∥2
p.

(3.6)

Note that when ς �= 0, from the moment bounds in (1.14), by choosing

μ̃(dx) = √
2μ(dx) + ς dx and J̃0(t, x) := √

2J0(t, x) + ς,

one can reduce it to the case that ς = 0, that is, ρ(0) = 0. Hence, in the following,
we only need to consider the case that ς = 0. We will study these three increments
in three steps.
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Step 1. In this step, we study I1. We apply the moment bound (1.14) to (3.4), it
follows that

I1
(
t, x, x′) ≤ CH(t, γp)

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

× ∣∣G(t − s, x − y1) − G
(
t − s, x′ − y1

)∣∣
× ∣∣G(t − s, x − y2) − G

(
t − s, x′ − y2

)∣∣
×

∫∫
R2d

μ(dz1)μ(dz2)G(s, y1 − z1)G(s, y2 − z2).

Here, we have used the definition of J0(t, x) and the fact that H(s, γp) is non-
decreasing in s; see Lemma 2.6 in [8]. By Lemma 3.1 and and (2.10), for all
α ∈ (0,1),∣∣G(t − s, x − y1) − G

(
t − s, x′ − y1

)∣∣
≤ C

[
G

(
2(t − s), x − y1

) + G
(
2(t − s), x′ − y1

)] |x − x′|α
(t − s)α/2

and

G(s, y1 − z1)
∣∣G(t − s, x − y1) − G

(
t − s, x′ − y1

)∣∣
≤ CG(2s, y1 − z1)

[
G

(
2(t − s), x − y1

) + G
(
2(t − s), x′ − y1

)] |x − x′|α
(t − s)α/2

= C
|x − x′|α
(t − s)α/2

[
G(2t, x − z1)G

(
2s(t − s)

t
, y1 − z1 − s

t
(x − z1)

)

+ G
(
2t, x′ − z1

)
G

(
2s(t − s)

t
, y1 − z1 − s

t

(
x′ − z1

))]
.

A similar bound holds for the expression with respect to y2 and z2. Expanding the
product of the two bounds, we will get a sum of four terms,

I1
(
t, x, x′) ≤

4∑
k=1

I1,k

(
t, x, x′)

where, for example,

I1,1
(
t, x, x′)
≤ C

∣∣x − x′∣∣2α
∫∫

R2d
μ(dz1)μ(dz2)

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)
1

(t − s)α

× G(2t, x − z1)G

(
2s(t − s)

t
, y1 − z1 − s

t
(x − z1)

)
× G

(
2t, x′ − z2

)
G

(
2s(t − s)

t
, y2 − z2 − s

t
(x − z2)

)
,
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and similarly for I1,i , i = 2,3,4. Because∣∣F[
G(t, · + w)

]
(ξ)

∣∣ ≤ exp
(
− t

2
|ξ |2

)
for all w ∈R

d ,

we see that

I1,1
(
t, x, x′)
≤ C

∣∣x − x′∣∣2α
∫∫

R2d
μ(dz1)μ(dz2)

∫ t

0
ds

∫
Rd

f̂ (dξ)
1

(t − s)α

× G(2t, x − z1)G(2t, x − z2) exp
(
−2s(t − s)

t
|ξ |2

)

= C
∣∣x − x′∣∣2α

J0(2t, x)J0
(
2t, x′) ∫ t

0
ds

∫
Rd

f̂ (dξ)
exp(−2s(t−s)

t
|ξ |2)

(t − s)α
.

By Lemma B.1 with g(s) = s−1/α and β = |ξ |2 (g is nonincreasing),∫ t

0
ds

∫
Rd

f̂ (dξ)
exp(−2s(t−s)

t
|ξ |2)

(t − s)α

≤ 2
∫ t

0
ds

∫
Rd

f̂ (dξ)
1

sα
exp

(−s|ξ |2)
≤ 2et

∫ t

0
ds

∫
Rd

f̂ (dξ)
1

sα
exp

(−s
(|ξ |2 + 1

))
≤ C

∫
Rd

f̂ (dξ)

(1 + |ξ |2)1−α
.

Hence,

I1,1
(
t, x, x′) ≤ C

∣∣x − x′∣∣2α
J0(2t, x)J0

(
2t, x′) ∫

Rd

f̂ (dξ)

(1 + |ξ |2)1−α
.

One can obtain similar bounds for all the other three terms. Therefore,

I1
(
t, x, x′) ≤ C

∣∣x − x′∣∣2α[
J0(2t, x) + J0

(
2t, x′)]2

∫
Rd

f̂ (dξ)

(1 + |ξ |2)1−α
.

Step 2. Now we consider the time increment I2. By (1.14),

I2
(
t, t ′, x′)

≤ C

∫ t

0
ds

∫∫
R2d

dy1 dy2
∣∣G(

t − s, x′ − y1
) − G

(
t ′ − s, x′ − y1

)∣∣
× ∣∣G(

t − s, x′ − y2
) − G

(
t ′ − s, x′ − y2

)∣∣f (y1 − y2)J0(s, y1)J0(s, y2)

= C

∫∫
Rd

μ(dz1)μ(dz2)

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)
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× G(s, y1 − z1)
∣∣G(

t − s, x′ − y1
) − G

(
t ′ − s, x′ − y1

)∣∣
× G(s, y2 − z2)

∣∣G(
t − s, x′ − y2

) − G
(
t ′ − s, x′ − y2

)∣∣.
Applying (3.2), using the fact that G(s, y1 − z1) ≤ CG(4s, y1 − z1) and then ap-
plying (2.10), we see that

G(s, y1 − z1)
∣∣G(

t − s, x′ − y1
) − G

(
t ′ − s, x′ − y1

)∣∣
≤ C(t − s)−α/2G(s, y1 − z1)G

(
4

(
t ′ − s

)
, x′ − y1

)(
t ′ − t

)α/2

≤ C(t − s)−α/2G(4s, y1 − z1)G
(
4

(
t ′ − s

)
, x′ − y1

)(
t ′ − t

)α/2

≤ C(t − s)−α/2G
(
4t ′, x′ − z1

)
× G

(
4s(t ′ − s)

t ′
, y1 − z1 − s

t ′
(
x′ − z1

))(
t ′ − t

)α/2
.

Therefore,

I2
(
t, t ′, x′)

≤ C
(
t ′ − t

)α ∫∫
R2d

μ(dz1)μ(dz2)G
(
4t ′, x′ − z1

)
G

(
4t ′, x′ − z2

)
×

∫ t

0
ds(t − s)−α

∫∫
R2d

dy1 dy2f (y1 − y2)

× G

(
4s(t ′ − s)

t ′
, y1 − z1 − s

t ′
(
x′ − z1

))

× G

(
4s(t ′ − s)

t ′
, y2 − z2 − s

t ′
(
x′ − z2

))
≤ C

(
t ′ − t

)α ∫∫
R2d

μ(dz1)μ(dz2)G
(
4t ′, x′ − z1

)
G

(
4t ′, x′ − z2

)
×

∫ t

0
ds(t − s)−α

∫
Rd

f̂ (dξ) exp
(
−4s(t − s)

t
|ξ |2

)
= C

(
t ′ − t

)α
J 2

0
(
4t ′, x′) ∫

Rd
f̂ (dξ)

×
∫ t

0
ds(t − s)−α exp

(
−4s(t − s)

t
|ξ |2

)
,

where in the second inequality above we have used the fact that

exp
(
−4s(t ′ − s)

t ′
|ξ |2

)
≤ exp

(
−4s(t − s)

t
|ξ |2

)
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since t ′ ≥ t . By the same arguments as those in Step 1,

I2
(
t, t ′, x′) ≤ C

(
t ′ − t

)α
J 2

0
(
4t ′, x′) ∫

Rd
f̂ (dξ)

∫ t

0
dss−α exp

(−2s|ξ |2)
≤ C

(
t ′ − t

)α
J 2

0
(
4t ′, x′) ∫

Rd
f̂ (dξ)

∫ t

0
dss−α exp

(−2s
(
1 + |ξ |2))

≤ C
(
t ′ − t

)α
J 2

0
(
4t ′, x′) ∫

Rd

f̂ (dξ)

(1 + |ξ |2)1−α
.

Step 3. As for I3, by the moment bound (1.14) and (2.10),

I3
(
t, t ′, x′)

≤ C

∫ t ′

t
ds

∫∫
R2d

dy1 dy2G
(
t ′ − s, x′ − y1

)
G

(
t ′ − s, x′ − y2

)
× f (y1 − y2)J0(s, y1)J0(s, y2)

= C

∫∫
Rd

μ(dz1)μ(dz2)

∫ t ′

t
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

× G(s, y1 − z1)G
(
t ′ − s, x′ − y1

)
G(s, y2 − z2)G

(
t ′ − s, x′ − y2

)
= C

∫∫
Rd

μ(dz1)μ(dz2)G
(
t ′, x′ − z1

)
G

(
t ′, x′ − z2

)
×

∫ t ′

t
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

× G

(
s(t ′ − s)

t ′
, y1 − z1 − s

t ′
(
x′ − z1

))

× G

(
s(t ′ − s)

t ′
, y2 − z2 − s

t ′
(
x′ − z2

))

≤ C

∫∫
Rd

μ(dz1)μ(dz2)G
(
t ′, x′ − z1

)
G

(
t ′, x′ − z2

) ∫ t ′

t
ds

∫
Rd

f̂ (dξ)

× exp
(
−s(t ′ − s)

t ′
|ξ |2

)

= CJ 2
0

(
t ′, x′) ∫ t ′

t
ds

∫
Rd

f̂ (dξ) exp
(
−s(t ′ − s)

t ′
|ξ |2

)
.

Notice that for any α ∈ (0,1],∫ t ′

t
ds exp

(
−s(t ′ − s)

t ′
|ξ |2

)

≤
∫ t ′

t
ds exp

(
− t (t ′ − s)

t ′
|ξ |2

)
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≤
∫ t ′

t
ds exp

(
− t (t ′ − s)

t ′
(
1 + |ξ |2) + t (t ′ − t)

t ′
)

≤ C

∫ t ′

t
ds exp

(
− t (t ′ − s)

t ′
(
1 + |ξ |2))

= C
1 − exp(− t (t ′−t)

t ′ (1 + |ξ |2))
1 + |ξ |2

≤ C
(t(t ′−t)

t ′ (1 + |ξ |2))α
1 + |ξ |2

= C(t ′ − t)α

(1 + |ξ |2)1−α
.

Therefore,

I3
(
t, t ′, x′) ≤ C

(
t ′ − t

)α
J 2

0
(
t ′, x′) ∫

Rd

f̂ (dξ)

(1 + |ξ |2)1−α
.(3.7)

Combining these three cases and applying the Kolmogorov’s continuity theorem,
we have completed the proof of Theorem 1.8. �

4. One approximation result (Proof of Theorem 1.9).

PROOF OF THEOREM 1.9. (1) By Theorem 1.2, we see that both u and uε

are well-defined random field solutions to (1.1). Let vε(t, x) = uε(t, x) − u(t, x)

and ρ̃(vε) := ρ(vε +u)−ρ(u). It is clear that ρ̃ is a Lipschitz continuous function
satisfying ρ̃(0) = 0 and Lipρ̃ = Lipρ . Then vε is a solution to (1.1) with ρ replaced
by ρ̃ starting from με := ((μψε) ∗ G(ε, ·))(x) − μ. Denote

Jε(t, x) = (
με ∗ G(t, ·))(x) and gε

(
t, x, x′) = ∣∣E[

vε(t, x)vε

(
t, x′)]∣∣.

Then g satisfies the following integral equation:

gε

(
t, x, x′) ≤ ∣∣Jε(t, x)Jε

(
t, x′)∣∣

+ Lip2
ρ

∫ t

0
ds

∫∫
R2d

G(t − s, x − y)G
(
t − s, x′ − y′)

× f
(
y − y′)g(

s, y, y′) dy dy′.
By Lemma A.1, we see that

gε

(
t, x, x′) ≤ ∣∣Jε(t, x)Jε

(
t, x′)∣∣

+ C

∫ t

0
ds

∫∫
R2d

G(t − s, x − y)G
(
t − s, x′ − y′)

× f
(
y − y′)∣∣Jε

(
s, y′)Jε

(
s, y′)∣∣ dy dy′.
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Notice that∣∣Jε(t, x)
∣∣ ≤ [(|μψε| ∗

∣∣G(t + ε, ·) − G(t, ·)∣∣)(x) + (|μψε − μ| ∗ G(t, ·))(x)
]

≤ [(|μ| ∗ ∣∣G(t + ε, ·) − G(t, ·)∣∣)(x) + (|μψε − μ| ∗ G(t, ·))(x)
]
.

Because for any ε ∈ (0, t), |G(t + ε, x) − G(t, x)| ≤ CG(2t, x) for all x ∈ R
d

uniformly in ε, and because |μψε − μ| ≤ |μ|, we see that∣∣Jε(t, x)
∣∣ ≤ C

(|μ| ∗ G(2t, ·))(x) + (|μ| ∗ G(t, ·))(x).

Then one can apply the dominated convergence theorem twice to conclude that

lim
ε→0

gε

(
t, x, x′) = 0,

which completes the proof of part (1) of Theorem 1.9.
(2) Since u and ũε start from the same initial data, we see that

E
[(

u(t, x) − ũε(t, x)
)2]

≤ 2E
(∫ t

0

∫
Rd

G(t − s, x − y)
[
ρ

(
u(s, y)

) − ρ
(
ũε(s, y)

)]
M(ds,dy)

)2

+ 2E
(∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
ũε(s, y)

)(
M(ds,dy) − Mε(ds,dy)

))2

:= I1(t, ε) + I2(t, ε).

For I1(t, ε), using the Lipschitz condition on ρ and since the initial condition is
bounded, we obtain that

I1(t, ε) ≤ C

∫ t

0

∫
Rd

G
(
2(t − s), y

)
f (y) sup

z∈Rd

E
[(

u(s, z) − ũε(s, z)
)2]

dy ds

= C

∫ t

0
dsk

(
2(t − s)

)
sup
z∈Rd

E
[(

u(s, z) − ũε(s, z)
)2]

,

where k(·) function is defined in (2.1). As for I2(t, ε), we have that

E

(∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
ũε(s, y)

)
M(ds,dy)

×
∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
ũε(s, y)

)
Mε(ds,dy)

)
= E

(∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
ũε(s, y)

)
M(ds,dy)

×
∫ t

0

∫∫
R2d

G(t − s, x − y)ρ
(
ũε(s, y)

)
φε(y − z)M(ds,dz)dy

)
= E

(∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
ũε(s, y)

)
M(ds,dy)
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×
∫ t

0

∫
Rd

(∫
Rd

G(t − s, x − y)ρ
(
ũε(s, y)

)
φε(y − z)dy

)
M(ds,dz)

)
= E

(∫ t

0
ds

∫∫
R2d

dy1 dy2G(t − s, x − y1)ρ
(
ũε(s, y1)

)
× G(t − s, x − y2)ρ

(
ũε(s, y2)

)
×

∫
Rd

dzφε(y2 − z)f (y1 − z)

)
= E

(∫ t

0
ds

∫∫
R2d

dy1 dy2f
ε(y1 − y2)G(t − s, x − y1)ρ

(
ũε(s, y1)

)
× G(t − s, x − y2)ρ

(
ũε(s, y2)

))
,

where we have applied the stochastic Fubini theorem and f ε(x) := (φε ∗f )(x). In
the same way, we can get

E

[(∫ t

0

∫
Rd

G(t − s, x − y)ρ
(
ũε(s, y)

)
Mε(ds,dy)

)2]
= E

(∫ t

0
ds

∫∫
R2d

dy1 dy2G(t − s, x − y1)ρ
(
ũε(s, y1)

)
× G(t − s, x − y2)ρ

(
ũε(s, y2)

)
f ε,ε(y1 − y2)

)
,

where f ε,ε(x) := (φε ∗ φε ∗ f )(x). Since φ is nonnegative definite, the kernel
function f ε,ε is nonnegative and nonnegative definite. Moreover, due to

φ̂ε(ξ)2 = φ̂(εξ)2 =
∣∣∣∣∫

Rd
e−iε〈ξ,x〉φ(x)dx

∣∣∣∣2 ≤
(∫

Rd
φ(x)dx

)2
= 1,(4.1)

f ε,ε satisfies Dalang’s condition (1.3). From the above calculation, we see that the
spatial correlation function for the noise Mε is f ε,ε(x). Notice that

kε(t) :=
∫
Rd

f ε,ε(z)G(t, z)dz

= (2π)−d
∫
Rd

f̂ (dξ)φ̂ε(ξ)2 exp
(
− t |ξ |2

2

)

≤ (2π)−d
∫
Rd

f̂ (dξ) exp
(
− t |ξ |2

2

)
= k(t),

for all ε > 0. Therefore, by Theorem 1.7,

sup
ε>0

sup
(s,x)∈[0,t]×Rd

∥∥ũε(s, x)
∥∥

2 ≤ sup
(s,x)∈[0,t]×Rd

∥∥u(s, x)
∥∥

2 < ∞.
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Thus,

I2(t, ε) ≤ C

∫ t

0

∫∫
R2d

G(t − s, x − y)G(t − s, x − z)

× ∣∣f (y − z) − 2f ε(y − z) + f ε,ε(y − z)
∣∣ dy dz ds

= C

∫ t

0

∫
Rd

G
(
2(t − s), y

)∣∣f (y) − 2f ε(y) + f ε,ε(y)
∣∣ dy ds

≤ C

∫ t

0

∫
Rd

G
(
2(t − s), y

)∣∣f (y) − f ε(y)
∣∣ dy ds

+ C

∫ t

0

∫
Rd

G
(
2(t − s), y

)∣∣f (y) − f ε,ε(y)
∣∣ dy ds

= C

∫
Rd

g
(
2t, |y|)∣∣f (y) − f ε(y)

∣∣ dy

+ C

∫
Rd

g
(
2t, |y|)∣∣f (y) − f ε,ε(y)

∣∣ dy,

where the function g(t, |x|) is defined in Lemma B.4. Because f is nonnegative
and ∫

Rd
g

(
4t, |y|)f (y)dy =

∫ t

0

∫
Rd

G(4s, y)f (y)dy ds

=
∫ t

0
k(4s)ds ≤ h1(4t) < ∞,

part (2) of Lemma B.5 implies that limε→0 I2(t, ε) = 0. Hence an application of
Gronwall’s lemma shows that

lim
ε→0+

sup
z∈Rd

E
[(

u(t, z) − ũε(t, z)
)2] = 0,

which completes the proof of Theorem 1.9. �

5. A weak limit (Proof of Theorem 1.11).

PROOF OF THEOREM 1.11. Fix φ ∈ Cc(R
d). Let I (t, x) be the stochastic

integral part of (1.5). We only need to prove that

lim
t→0+

∫
Rd

dxI (t, x)φ(x) = 0 in L2(�).

Denote L(t) := ∫
R

I (t, x)φ(x)dx. By the stochastic Fubini theorem (see [25],
Theorem 2.6, page 296),

L(t) =
∫ t

0

∫
Rd

(∫
Rd

dxG(t − s, x − y)φ(x)

)
ρ

(
u(s, y)

)
M(ds,dy).
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Hence, by Itô’s isometry and the linear growth condition on ρ,

E
[
L(t)2] ≤ Lip2

ρ

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dx1 dx2

×
√

ς2 + ∥∥u(s, y1)
∥∥2

2G(t − s, x1 − y1)
∣∣φ(x1)

∣∣
×

√
ς2 + ∥∥u(s, y2)

∥∥2
2G(t − s, x2 − y2)

∣∣φ(x2)
∣∣,

where ς = |ρ(0)|/Lipρ . Then by the moment bounds (1.14),

E
[
L(t)2] ≤ C

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dx1 dx2

×
√

1 + J 2
0 (s, y1)G(t − s, x1 − y1)

∣∣φ(x1)
∣∣

×
√

1 + J 2
0 (s, y2)G(t − s, x2 − y2)

∣∣φ(x2)
∣∣.

Assume that t ≤ 1/2. By considering μ∗(dx) = μ(dx)+ dx and setting J∗(t, x) =
(μ∗ ∗ G(t, ·))(x), we see that

1 + J 2
0 (t, x) ≤ J 2∗ (t, x).

Because for some constant C > 0, |φ(x)| ≤ CG(1, x) for all x ∈ R
d , we can apply

the semigroup property to get

E
[
L(t)2] ≤ C

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)J∗(s, y1)G(t + 1 − s, y1)

× J∗(s, y2)G(t + 1 − s, y2).

Then by a similar argument as those in the proof of Lemma 2.2, we see that

E
[
L(t)2] ≤ CJ 2∗ (t + 1, x)

∫
Rd

f̂ (dξ)

∫ t

0
ds exp

(
−s(t + 1 − s)

t + 1
|ξ |2

)
≤ CJ 2∗ (t + 1, x)

∫
Rd

f̂ (dξ)

∫ t

0
ds exp

(
− s

2
|ξ |2

)
,

where the last inequality is due to t ≤ 1/2. Since the above double integral is
finite for t = 1/2, by the dominated convergence theorem, we see that this double
integral goes to zero as t → 0. This completes the proof. �

6. Weak comparison principle (Proof of Theorem 1.3).

PROOF OF THEOREM 1.3. We begin by noting that (1.9) is an immediate con-
sequence of (1.8). So we only need to prove (1.8). The proof consists of four steps.
Both the setup and Steps 1 and 4 of the proof follow the same lines as those in the
proof of Theorem 1.1 in [7] with some minor changes. The main difference lies in
Step 2 and Step 3.
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Now we set up some notation in the proof. We view the G(t, x) as an operator,
denoted by G(t), as follows:

(6.1) G(t)f (x) := (
G(t, ·) ∗ f

)
(x).

Let I be the identity operator: If (x) := (δ ∗ f )(x) = f (x). Set

(6.2) �ε = G(ε) − I
ε

.

Let

(6.3) Gε(t) = exp
(
t�ε) = e− t

ε

∞∑
n=0

(t/ε)n

n! G(nε) := e−t/εI + Rε(t),

where the operator Rε(t) has a density, denoted by Rε(t, x), which is equal to

(6.4) Rε(t, x) = e−t/ε
∞∑

n=1

(t/ε)n

n! G(nε, x).

For ε > 0 and x ∈ R
d , denote

(6.5) Mε
x(t) =

∫ t

0

∫
Rd

G(ε, x − y)M(ds,dy) for t ≥ 0.

Denote Ṁε
x(t) = ∂

∂t
Mε

x(t). Then the quadratic variation of dMε
x(t) is

d
〈
Mε

x(t)
〉 = ∫∫

R2d
G(ε, x − y1)G(ε, x − y2)f (y1 − y2)dy1 dy2 dt

=
∫
Rd

e−ε|ξ |2 f̂ (dξ)dt.

Consider the following stochastic partial differential equation:

(6.6)

⎧⎨⎩
∂

∂t
uε(t, x) = �εuε(t, x) + ρ

(
uε(t, x)

)
Ṁε

x(t), t > 0, x ∈R
d,

uε(0, x) = (
μ ∗ G(ε, ·))(x), x ∈ R

d .

Since ρ is Lipschitz continuous and �ε is a bounded operator, (6.6) has a unique
strong solution

(6.7) uε(t, x) = (
μ ∗ G(ε, ·))(x) +

∫ t

0
ds�εuε(s, x) +

∫ t

0
ρ

(
uε(s, x)

)
dMε

x(s).

We proceed the proof in three steps. We fix t > 0 and assume that ε ∈ (0,1 ∧ t).
Step 1: Let uε,1(t, x) and uε,2(t, x) be the solutions to (6.6) with initial data

(μ1 ∗ G(ε, ·))(x) and (μ2 ∗ G(ε, ·))(x), respectively. Following exactly the same
lines as those in Step 1 of the proof in [7], we can prove that vε(t, x) := uε,2(t, x)−
uε,1(t, x) satisfies

(6.8) P
(
vε(t, x) ≥ 0, for every t > 0 and x ∈R

d) = 1.
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Actually, one can construct a sequence of C2(R) functions �n as in [7] such that

�n(x) ↑ −(x ∧ 0) =: �(x),

� ′
n(x)x ↑ �(x), 0 ≤ � ′′

n(x)x2 ≤ 2/n.
(6.9)

Then we apply Itô’s formula to �n(vε(t, x)) and take the expectation on both sides
to remove the martingale part. The third property in (6.9) ensures that the quadratic
variation part goes to zero as n → ∞. Using the other two properties in (6.9), we
see that by passing to the limit, it holds that

E
[
�

(
vε(t, x)

)] ≤ 1

ε

∫ t

0
ds

∫
Rd

dyG(ε, x − y)E
[
�

(
vε(s, y)

)]
.

Then one can apply Gronwall’s lemma to supy∈Rd E[�(vε(s, y))] to conclude that
E[�(vε(t, x))] = 0 for all t > 0 and x ∈ R

d . This implies (6.8).
Step 2. In this step, we consider the case that the initial condition is bounded

nonnegative function, that is, μ(dx) = g(x)dx where g(x) ≥ 0 and g ∈ L∞(Rd).
We also assume that the covariance function f satisfies condition (1.4) with α = 1,
that is, ∫

Rd
f̂ (dξ) < ∞.

Let uε(t, x) be the solution to (1.1) starting from uε(0, x) := (μ ∗ G(ε, ·))(x). The
aim of this step is to prove

(6.10) lim
ε→0

sup
x∈Rd

∥∥uε(t, x) − u(t, x)
∥∥2

2 = 0 for all t > 0.

Notice that uε(t, x) can be written in the following mild form using the kernel of
Gε(t):

uε(t, x) = (
uε(0, ·) ∗ Gε(t, ·))(x) +

∫ t

0
e−(t−s)/ερ

(
uε(s, x)

)
dMε

x(s)

+
∫ t

0

∫
Rd

Rε(t − s, x − y)ρ
(
uε(s, y)

)
dMε

y(s)

= (
uε(0, ·) ∗ Gε(t, ·))(x) +

∫ t

0
e−(t−s)/ερ

(
uε(s, x)

)
dMε

x(s)

+
∫ t

0

∫
Rd

(∫
Rd

Rε(t − s, x − z)ρ
(
uε(s, z)

)
G(ε, y − z)dz

)
M(ds,dy).

The boundedness of the initial data implies that

(6.11) At := sup
ε∈(0,1]

sup
s∈[0,t]

sup
x∈Rd

∥∥uε(s, x)
∥∥2

2 ∨ ∥∥u(s, x)
∥∥2

2 < ∞.
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By the assumption on ρ, we have the following estimate:

∥∥uε(t, x) − u(t, x)
∥∥2

2 ≤ C

6∑
n=1

In(t, x; ε),

where

I1(t, x; ε) := ((
uε(0, ·) ∗ Gε(t, ·))(x) − u(0, ·) ∗ G(t, ·)(x)

)2
,

I2(t, x; ε) :=
∫ t

0
ds

∫
Rd

e−ε|ξ |2e− 2(t−s)
ε f̂ (dξ),

and I3(t, x; ε), I4(t, x; ε), I5(t, x; ε), I6(t, x; ε) are, respectively, equal to∥∥∥∥∫ t

0

∫
Rd

∫
Rd

Rε(t − s, x − z)
[
ρ

(
uε(s, z)

) − ρ
(
u(s, z)

)]
× G(ε, y − z)dzM(ds,dy)

∥∥∥∥2

2
,∥∥∥∥∫ t

0

∫
Rd

∫
Rd

Rε(t − s, x − z)
[
ρ

(
u(s, z)

) − ρ
(
u(s, y)

)]
× G(ε, y − z)dzM(ds,dy)

∥∥∥∥2

2
,∥∥∥∥∫ t

0

∫
Rd

∫
Rd

(
Rε(t − s, x − z) − G(t − s, x − z)

)
ρ

(
u(s, y)

)
× G(ε, y − z)dzM(ds,dy)

∥∥∥∥2

2
,∥∥∥∥∫ t

0

∫
Rd

∫
Rd

(
G(t − s, x − y) − G(t − s, x − z)

)
ρ

(
u(s, y)

)
× G(ε, y − z)dzM(ds,dy)

∥∥∥∥2

2
.

Since μ has a bounded density, we see that

I1(t, x; ε)
≤ C

∣∣(uε(0, ·) ∗ Gε(t, ·))(x) − (
u(0, ·) ∗ G(t, ·))(x)

∣∣
≤ C

(
uε(0, ·) ∗ ∣∣Gε(t, ·) − G(t, ·)∣∣)(x)

+ C
(
u(0, ·) ∗ ∣∣G(t + ε, ·) − G(t, ·)∣∣)(x)

≤ C

(
e−t/ε +

∫
Rd

∣∣Rε(t, y) − G(t, y)
∣∣dy

+
∫
Rd

∣∣G(t + ε, y) − G(t, y)
∣∣dy

)
.
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Then by Lemma B.3 and the fact that log(1 + x) ≤ √
x, we see that

sup
x∈Rd

sup
s∈(0,t]

I1(s, x; ε) ≤ C
(
e−t/ε + √

ε/t
)
.(6.12)

As for I2, we see that

I2(t, x; ε) =
∫
Rd

e−ε|ξ |2 ε

2

(
1 − e−2t/ε)

f̂ (dξ)

≤ ε

2

∫
Rd

f̂ (dξ) ≤ Cε,

which implies that

sup
x∈Rd

sup
s∈(0,t]

I2(s, x; ε) ≤ Cε.(6.13)

The term I3 will contribute to the recursion. By (6.11),

I3(t, x; ε)

≤ E

[∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

×
∫
Rd

dz1R
ε(t − s, x − z1)

[
ρ

(
uε(s, z1)

) − ρ
(
u(s, z1)

)]
G(ε, y1 − z1)

×
∫
Rd

dz2R
ε(t − s, x − z2)

[
ρ

(
uε(s, z2)

) − ρ
(
u(s, z2)

)]
G(ε, y2 − z2)

]
≤ C

∫ t

0
ds sup

z∈Rd

∥∥uε(s, z) − u(s, z)
∥∥2

2

∫∫
R2d

dy1 dy2f (y1 − y2)

× (
Rε(t − s, ·) ∗ G(ε, ·))(x − y1)

(
Rε(t − s, ·) ∗ G(ε, ·))(x − y2)

≤ C

∫ t

0
ds sup

z∈Rd

∥∥uε(s, z) − u(s, z)
∥∥2

2,

where in the last line we used Lemma B.2. As for I4,

I4(t, x; ε)

= E

[∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

×
(∫

Rd
dz1R

ε(t − s, x − z1)
[
ρ

(
u(s, z1)

) − ρ
(
u(s, y1)

)]
G(ε, y1 − z1)

)
×

(∫
Rd

dz2R
ε(t − s, x − z2)

[
ρ

(
u(s, z2)

) − ρ
(
u(s, y2)

)]
G(ε, y2 − z2)

)]
≤ C

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dz1 dz2
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× Rε(t − s, x − z1)
∥∥u(s, z1) − u(s, y1)

∥∥
2G(ε, y1 − z1)

× Rε(t − s, x − z2)
∥∥u(s, z2) − u(s, y2)

∥∥
2G(ε, y2 − z2).

Then by the Hölder continuity of u (see the proof of Theorem 1.8), we have that

I4(t, x; ε) ≤ C

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dz1 dz2

× Rε(t − s, x − z1)|z1 − y1|G(ε, y1 − z1)

× Rε(t − s, x − z2)|z2 − y2|G(ε, y2 − z2)

≤ Cε

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dz1 dz2

× Rε(t − s, x − z1)G(2ε, y1 − z1)R
ε(t − s, x − z2)G(2ε, y2 − z2)

≤ Cε,

where the last inequality is due to Lemma B.2 and the second inequality is due to
the following inequality with α = 1:

|z1 − y1|α|z2 − y2|αG(ε, y1 − z1)G(ε, y2 − z2)

≤ CεαG(2ε, y1 − z1)G(2ε, y2 − z2),
(6.14)

for all α ∈ (0,1]. Hence,

sup
x∈Rd

sup
s∈[0,t]

I4(s, x; ε) ≤ Cε.(6.15)

Now let us consider I5,

I5(t, x; ε)

= E

[∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

×
(∫

Rd
dz1

(
Rε(t − s, x − z1) − G(t − s, x − z1)

)
× ρ

(
u(s, y1)

)
G(ε, y1 − z1)

)
×

(∫
Rd

dz2
(
Rε(t − s, x − z2) − G(t − s, x − z2)

)
× ρ

(
u(s, z2)

)
G(ε, y2 − z2)

)]
≤ C

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dz1 dz2

× ∣∣Rε(t − s, x − z1) − G(t − s, x − z1)
∣∣G(ε, y1 − z1)
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× ∣∣Rε(t − s, x − z2) − G(t − s, x − z2)
∣∣G(ε, y2 − z2)

≤ C

∫ t

0
ds

∫∫
R2d

dz1 dz2
∣∣Rε(s, z1) − G(s, z1)

∣∣∣∣Rε(s, z2) − G(s, z2)
∣∣

×
∫∫

R2d
dy1 dy2f (y1 − y2)G(ε, y1 − x + z1)G(ε, y2 − x + z2)

= C

∫ t

0
ds

∫∫
R2d

dz1 dz2
∣∣Rε(s, z1) − G(s, z1)

∣∣
× ∣∣Rε(s, z2) − G(s, z2)

∣∣f2ε(z1 − z2),

where f2ε(z) = (f ∗ G(2ε, ·))(z). Hence,

I5(t, x; ε) ≤ C

∫ t

0
ds

∫
Rd

dz1 dz2
∣∣Rε(s, z1) − G(s, z1)

∣∣
×

∫
R

dz2
(
Rε(s, z2) + G(s, z2)

)
f2ε(z1 − z2).

Notice that by the assumption of f in this step,∫
Rd

(
Rε(s, z2) + G(s, z2)

)
f2ε(z1 − z2)dz2

≤
∫
Rd

(
Rε(s, z2) + G(s, z2)

)
f2ε(z2)dz2

=
∫
Rd

(
e−s/ε

∞∑
n=1

(s/ε)n

n! e− nε
2 |ξ |2 + e− s|ξ |2

2

)
e−ε|ξ |2 f̂ (dξ) ≤ C.

Thus, according to Lemma B.3, we have

I5(t, x; ε) ≤C

∫ t

0

(
e−s/ε + ε1/2

s1/2

)
≤ Cε1/2.

Thus,

sup
x∈Rd

sup
s∈(0,t]

I5(s, x; ε) ≤ Cε1/2.(6.16)

Now we study I6. By Lemma 3.1,

I6(t, x; ε)

= E

[∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)ρ
(
u(s, y1)

)
ρ

(
u(s, y2)

)
×

(∫
Rd

dz1
(
G(t − s, x − z1) − G(t − s, x − y1)

)
G(ε, y1 − z1)

)
×

(∫
Rd

dz1
(
G(t − s, x − z2) − G(t − s, x − y2)

)
G(ε, y2 − z2)

)]
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≤ C

∫ t

0
ds

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dz1 dz2

× ∣∣G(t − s, x − z1) − G(t − s, x − y1)
∣∣G(ε, y1 − z1)

× ∣∣G(t − s, x − z2) − G(t − s, x − y2)
∣∣G(ε, y2 − z2)

≤ C

∫ t

0
ds

1

(t − s)1/2

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dz1 dz2

× |z1 − y1|1/2[
G

(
2(t − s), x − z1

) + G
(
2(t − s), x − y1

)]
G(ε, y1 − z1)

× |z2 − y2|1/2[
G

(
2(t − s), x − z2

) + G
(
2(t − s), x − y2

)]
G(ε, y2 − z2).

Then by (6.14) with α = 1/2 and by the semigroup property,

I6(t, x; ε) ≤ Cε1/2
∫ t

0
ds

1

s1/2

∫∫
R2d

dy1 dy2f (y1 − y2)

∫∫
R2d

dz1 dz2

× [
G(2s, x − z1) + G(2s, x − y1)

]
G(2ε, y1 − z1)

× [
G(2s, x − z2) + G(2s, x − y2)

]
G(2ε, y2 − z2)

= Cε1/2
∫ t

0
ds

1

s1/2

∫∫
R2d

dy1 dy2f (y1 − y2)

× G
(
2(s + ε), x − y1

)
G

(
2(s + ε), x − y2

)
≤ Cε1/2

∫ ∞
0

ds
1

s1/2

∫
Rd

e−2(s+ε)(|ξ |2+1)f̂ (dξ)

≤ Cε1/2
∫
Rd

f̂ (dξ)

(1 + |ξ |2)1/2 ≤ Cε1/2.

Thus,

sup
x∈Rd

sup
s∈[0,t]

I6(s, x; ε) ≤ Cε1/2.(6.17)

Therefore, by setting

M(t; ε) := sup
y∈Rd

∥∥uε(t, y) − u(t, y)
∥∥2

2,

we have shown that

M(t; ε) ≤ C
(
ε1/2 + e−t/ε + √

ε/t
) + C

∫ t

0
M(s; ε)ds.

Then an application of Gronwall’s lemma shows that

M(t; ε) ≤ C
(
ε1/2 + e−t/ε + √

ε/t
) + CeCt

∫ t

0

(
ε1/2 + e−s/ε + √

ε/s
)

ds → 0,

as ε → 0. This proves (6.10).
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Step 3. In this step, we still work under the same assumption on the initial con-
dition as in Step 2, that is, μ(dx) = g(x)dx with g ≥ 0 and g ∈ L∞(Rd), but we
assume that the covariance function f satisfies Dalang’s condition (1.3). Choose
a nonnegative and nonnegative definite function φ as in part (2) of Theorem 1.9
(see also Remark 1.10). Let u and uε be the solutions to (1.1) and (1.17), respec-
tively, with the same initial data μ. From the proof of part (2) of Theorem 1.9, we
see that the spatial covariance function for Mε is (f ∗ φε ∗ φε)(x). We claim that
(f ∗ φε ∗ φε)(x) satisfies (1.4) with α = 1. Indeed, because φ(x) ≤ CG(1, x), we
have that φε(x) ≤ CG(ε2, x) and∫

Rd
f̂ (dξ)φ̂ε(ξ)2 = C

∫∫
R2d

f (x − y)φε(x)φε(y)dx dy

≤ C

∫∫
R2d

f (x − y)G
(
ε2, x

)
G

(
ε2, y

)
dx dy

= C

∫
Rd

f (y)G
(
2ε2, y

)
dy = Ck

(
2ε2)

< ∞,

where k(·) is defined in (2.1). Hence, by Step 2, we see that

P
(
uε(t, x) ≥ 0

) = 1 for all t > 0 and x ∈ R
d .

Part (2) of Theorem 1.9 implies that uε(t, x) converges to u(t, x) a.s., for each
t > 0 and x ∈ R

d . Therefore,

P
(
u(t, x) ≥ 0

) = 1 for all t > 0 and x ∈ R
d .

Finally, suppose that μi(dx) = gi(x)dx with gi ∈ L∞(Rd), i = 1,2. Let uε,i be the
solutions of (1.17) driven by Mε and starting from initial conditions μi . If g1(x) ≤
g2(x) for almost all x ∈ R

d , then by Step 1, vε(t, x) := uε,2(t, x) − uε,1(t, x) ≥ 0
a.s. for all t > 0 and x ∈ R

d . This step implies that vε(t, x) converges to v(t, x) =
u2(t, x) − u1(t, x) in L2(�) for all t > 0 and x ∈ R

d . Therefore, v(t, x) is non-
negative a.s., that is,

P
(
u1(t, x) ≤ u2(t, x)

) = 1 for all t > 0 and x ∈ R
d .

Step 4. Now we assume that the initial data μ1 and μ2 are measures that satisfy
(1.2). Recall the definition of ψε in (1.16). For ε > 0, let uε,i , i = 1,2, be the
solutions to (1.1) starting from ([μiψε] ∗ G(ε, ·))(x). Denote v(t, x) = u2(t, x) −
u1(t, x) and vε(t, x) = uε,2(t, x)−uε,1(t, x). Because ψε is a continuous function
with compact support on R, the initial data for uε,i(t, x) are bounded functions.
By Step 3, we have that

P
(
vε(t, x) ≥ 0

) = 1 for all t > 0, x ∈ R
d and ε > 0.

Then part (1) of Theorem 1.9 implies that

P
(
v(t, x) ≥ 0

) = 1 for all t > 0 and x ∈ R
d .

This completes the whole proof of Theorem 1.3. �
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7. Strong comparison principle and strict positivity (Proofs of Theo-
rems 1.5 and 1.6). We need some lemmas. Denote Q(r) = [−r, r]d , that is, a
d-dimensional centered cube in R

d of radius r .

LEMMA 7.1. Let � > 0. For all t > 0 and M > 0, there exists some constants
1 < m0 = m0(t,M) < ∞ and γ > 0 such that for all m ≥ m0, s ∈ [ t

2m
, t

m
] and

x ∈ R
d ,

(7.1)
(
G(s, ·) ∗ 1Q(�)

)
(x) ≥ γ1

Q(�+M
m

)
(x).

PROOF. Since the d-dimensional heat kernel can be factored as a product
of one-dimensional heat kernel, so the proof will be parallel with the proof of
Lemma 4.1 in [7]. We will not repeat it here. �

LEMMA 7.2. Let � > 0, t > 0, and M > 0. Assume that (1.4) holds for some
α ∈ (0,1]. If ρ(0) = 0 and μ(dx) = 1Q(�)(x)dx, then there are some finite con-
stants � := �(β,Lipρ, t) > 0, β > 0 and m0 > 0 such that for all m ≥ m0,

P

(
u(s, x) ≥ β1

Q(�+M
m

)
(x) for all

t

2m
≤ s ≤ t

m
and x ∈ R

d

)
≥ 1 − exp

(−�mα(logm)1+α)
.

PROOF. This proof follows similar arguments as those in the proof of
Lemma 4.3 in [7]. Here, we only give a sketch of it. Denote S := St,m,�,M :=
{(s, y) : t

2m
≤ s ≤ t

m
, y ∈ Q(� + M

m
)}. By Lemma 7.1, for some β > 0,

(7.2)
(
μ ∗ G(s, ·))(x) ≥ 2β1

Q(�+M
m

)
(x) for all s ∈

[
t

2m
,

t

m

]
and x ∈ R

d .

Then the stochastic integral part I (t, x) of the mild solution in (1.5) satisfies

P

(
u(s, x) < β1

Q(�+M
m

)
for some

t

2m
≤ s ≤ t

m
and x ∈ R

d

)
≤ P

(
I (s, x) < −β for some (s, x) ∈ S

)
≤ P

(
sup

(s,x)∈S

∣∣I (s, x)
∣∣ > β

)
≤ β−p

E

(
sup

(s,x)∈S

∣∣I (s, x)
∣∣p)

.

Denote τ = t/m and S′ := {(s, y) : 0 ≤ s ≤ t/m, |y| ≤ � + M/m}. Using the fact
that I (0, x) ≡ 0 for all x ∈ R

d , we see that for all 0 < η < 1 − 6d
αp

,

E

(
sup

(s,x)∈S

∣∣∣∣I (s, x)

τ
αη
2

∣∣∣∣p)
≤ E

(
sup

(s,x),(s′,x′)∈S′

∣∣∣∣ I (s, x) − I (s ′, x′)
(|x − x′|α + |s − s′|α/2)η

∣∣∣∣p)
.

We are interested in, and hence assume in the following, the case when p =
O([m logm]α) as m → ∞; see (7.3) below. Since our initial condition is bounded,
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by (1.15), an application of the Kolmogorov’s continuity theorem shows that for
large p,

β−p
E

(
sup

(s,x)∈S

∣∣I (s, x)
∣∣p)

≤ Cτ
α
2 pηeCp

α+1
α τ

≤ C exp
(

1

2
αpη log(τ ) + Cp

α+1
α τ

)
.

Since p is large, we may choose η = 1/2. Hence, the exponent in the right-hand
side of the above inequalities becomes

f (p) := 1

4
αp log(τ ) + Cp

α+1
α τ.

Some elementary calculation shows that f (p) is minimized at

p =
(

α2 log(1/τ)

4(α + 1)Cτ

)α

=
(

α2m log(m/t)

4(α + 1)Ct

)α

.(7.3)

Hence, for some positive constants A and �,

min
p≥2

f (p) ≤ f
(
p′) = −�mα[

log(m)
]1+α with p′ = A

[
m log(m)

]α
.

This completes the proof of Lemma 7.2. �

PROOF OF THEOREM 1.5. This proof follows the same arguments as those in
the proof of Theorem 1.3 in [7]. Here, we only give a sketch of the proof. Interested
readers are referred to [7] for details.

Let u(t, x) := u2(t, x) − u1(t, x) and denote ρ̃(u) = ρ(u + u1) − ρ(u1). Then
it is not hard to see that u(t, x) is a solution to (1.1) with the nonlinear function ρ̃

and the initial data μ := μ2 − μ1. Note that ρ̃ is a Lipschitz continuous function
with the same Lipschitz constant as for ρ and ρ̃(0) = 0. For simplicity, we will
use ρ instead of ρ̃. By the weak comparison principle, we only need to consider
the case when μ has compact support and show that u(t, x) > 0 for all t > 0 and
x ∈ R

d , a.s.
Case I. We fist assume that μ(dx) = 1Q(�) dx for some � > 0. Denote

(7.4) c(m) := exp
(−�mα[

log(m)
]1+α)

,

where � is a constant defined in Lemma 7.2. We comment that due to a version
mismatch in [7], B0 should be defined separately, that is,

Ak :=
{
u(s, x) ≥ βk+11Sm

k
(x) for all s ∈

[
(2k + 1)t

2m
,
(k + 1)t

m

]
and x ∈ R

d

}
,

for all k ≥ 0,

Bk :=
{
u(s, x) ≥ βk+11Sm

k
(x) for all s ∈

[
kt

m
,
(2k + 1)t

2m

]
and x ∈ R

d

}
,
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FIG. 1. Induction schema for the strong comparison principle in the one-spatial dimension case.

for all k ≥ 1 and

B0 :=
{
u

(
t

2m
,x

)
≥ β1Sm

0
(x) for all x ∈ R

d

}
,

where

Sm
k :=

(
−� − Mk

m
,� + Mk

m

)
.

See Figure 1 for an illustration of the schema.
By an argument using the strong Markov property, one can show that

P(Ak |Fkt/m) ≥ 1 − c(m) a.s. on Ak−1 for 0 ≤ k ≤ m − 1,

which implies

P(Ak | Ak−1 ∩ · · · ∩ A0) ≥ 1 − c(m) for all 1 ≤ k ≤ m − 1.

Notice that the fact that A0 ⊆ B0 implies that P(B0) ≥ P(A0) ≥ 1 − c(m). By
similar arguments as those for Ak , one can show that

P(Bk | Bk−1 ∩ · · · ∩ B0) ≥ 1 − c(m) for all 1 ≤ k ≤ m − 1.
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Then

P

( ⋂
0≤k≤m−1

[Ak ∩ Bk]
)

≥ 1 −
(

1 − P

( ⋂
0≤k≤m−1

Ak

))
−

(
1 − P

( ⋂
0≤k≤m−1

Bk

))

≥ (
1 − c(m)

)m−1
P(A0) + (

1 − c(m)
)m−1

P(B0) − 1

≥ 2
(
1 − c(m)

)m − 1.

(7.5)

Therefore, for all t > 0 and M > 0,

P
(
u(s, x) > 0 for all t/2 ≤ s ≤ t and x ∈ Q(M/2)

)
≥ lim

m→∞P

( ⋂
0≤k≤m−1

[Ak ∩ Bk]
)

≥ lim
m→∞ 2

(
1 − c(m)

)m − 1 = 1.

Since t and M are arbitrary, this completes the proof for the case when μ(dx) =
1Q(�) dx.

Case II. Now for general initial data μ, we only need to prove that for each
ε > 0,

P
(
u(t, x) > 0 for t ≥ ε and x ∈ R

d) = 1.(7.6)

Fix ε > 0. Denote V (t, x) := u(t + ε, x). By the Markov property, V (t, x) solves
(1.1) with the time-shifted noise Ṁε(t, x) := Ṁ(t + ε, x) starting from V (0, x) =
u(ε, x), that is,

V (t, x) = (
u(ε,◦) ∗ G(t, ·))(x)

+
∫∫

[0,t]×Rd
ρ

(
V (s, y)

)
G(t − s, x − y)Mε(ds,dy).

(7.7)

We first prove by contradiction that

P
(
u(ε, x) = 0 for all x ∈ R

d) = 0.(7.8)

Notice that by Theorem 1.8 the function x �→ u(t, x) is Hölder continuous over
R

d a.s. The weak comparison principle (Theorem 1.3) shows that u(t, x) ≥ 0 a.s.
Hence, if (7.8) is not true, then by the Markov property and the strong comparison
principle in Case I, at all times η ∈ [0, ε], with some strict positive probability,
u(η, x) = 0 for all x ∈ R

d , which contradicts Theorem 1.11 as η goes to zero.
Therefore, there exists a sample space �′ with P(�′) = 1 such that for each ω ∈ �′,
there exists x ∈R

d such that u(ε, x,ω) > 0.
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Since u(ε, x,ω) is continuous at x, one can find two nonnegative constants c =
c(ω) and β = β(ω) such that u(ε, y,ω) ≥ β1x+Q(c)(y) for all y ∈ R

d . Then Case
I implies that

P
(
Vω(t, x) > 0 for all t ≥ 0 and x ∈ R

d ) = 1,

where Vω is the solution to (7.7) starting from u(ε, x,ω). Therefore, (7.6) is true.
This completes the proof of Theorem 1.5. �

PROOF OF THEOREM 1.6. Following the proof of Theorem 1.5, since K is
compact, we can choose η,T ,N > 0 such that K ⊂ [η,T ]×Q(N). Let β , Ak and
Bk be as in the proof of Theorem 1.5, we have

P

(
inf

(t,x)∈K
u(t, x) < βm

)
≤ 1 − P

( ⋂
0≤k≤m−1

(Ak ∩ Bk)

)
≤ 2

[
1 − (

1 − c(m)
)m]

,

where c(m) is a positive quantity defined in (7.4). Then we use the fact that (1 −
x)m ≥ 1−mx for all x > 0 and m > 1 to conclude that for some �′ slightly bigger
than the � in (7.4),

P

(
inf

(t,x)∈K
u(t, x) < βm

)
≤ 2mc(m) ≤ exp

(−�′mα(logm)1+α)
.

Finally, by taking m = | log ε|, we complete the proof of Theorem 1.6. �

APPENDIX A: RECURSION ON THE TWO-POINT CORRELATION

We have encountered two types of recursions. One is (2.6), which is used in
the proof of Theorem 1.7; the other is (A.4) below, which is used in the proof of
Theorem 1.9. Lemma A.1 below is sharper than Lemma 2.2 and is used in [8] to
obtain lower bounds for the second moment.

We need to introduce some notation. For h,w : R+ × R
3d �→ R, define the

(asymmetric convolution) operation “�,” which depends on f , as follows:

(h�w)
(
t, x, x′;y)

:=
∫ t

0
ds

∫∫
R2d

dz dz′h
(
t − s, x − z, x′ − z′;y − (

z − z′))
× w

(
s, z, z′;y)

f
(
y − (

z − z′))
,

(A.1)

or equivalently, by change of variables,

(h�w)
(
t, x, x′;y)

:=
∫ t

0
ds

∫∫
R2d

dz dz′h
(
s, z, z′;y − [

(x − z) − (
x′ − z′)])

× w
(
t − s, x − z, x′ − z′;y)

f
(
y − [

(x − z) − (
x′ − z′)])

.

(A.2)
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This operation is associative (see Lemma B.1 in [8])(
(h�w)� v

)(
t, x, x′;y) = (

h� (w � v)
)(

t, x, x′;y)
.

We use the convention that for functions h defined on R+ × R
2d , when applying

the operation � to h, it is meant for h′(t, x, x′;y) := h(t, x, x′).
For t > 0 and x, x′, y ∈R

d , define recursively

Ln

(
t, x, x′;y) :=

{
G(t, x)G

(
t, x′) if n = 0,

(L0 �Ln−1)
(
t, x, x′;y)

for n ≥ 1.

For λ ∈ R, Lemma 2.7 of [8] ensures that the following series is well defined:

Kλ

(
t, x, x′;y) :=

∞∑
n=0

λ2(n+1)Ln

(
t, x, x′;y) ≤ L0

(
t, x, x′)H (

t;2λ2)
.(A.3)

Then the upper bounds for the two-point correlation function in Theorem 2.4 of
[8] can be summarized as the following lemma.

LEMMA A.1. Suppose that g : R+ × R
2d �→ R is some measurable function

such that (L0 � |g|)(t, x, x′;0) < ∞ for all t > 0 and x, x′ ∈ R
d . If for some

nonnegative function J∗ : R+ × R
2d �→ R+ and λ ≥ 0, g satisfies the following

integral inequality:

g
(
t, x, x′) ≤ J∗

(
t, x, x′) + λ2

∫ t

0
ds

∫∫
R2d

g(s, y1, y2)

(A.4)
× f (y1 − y2)G(t − s, x − y1)G

(
t − s, x′ − y2

)
dy1 dy2,

then

g
(
t, x, x′) ≤ J∗

(
t, x, x′) + (Kλ � J∗)

(
t, x, x′;0

)
.(A.5)

In particular,

g
(
t, x, x′) ≤ J∗

(
t, x, x′) + H

(
t;2λ2) ∫ t

0
ds

∫∫
R2d

J∗(s, y1, y2)

(A.6)
× G(t − s, x − y1)G

(
t − s, x′ − y2

)
f (y1 − y2)dy1 dy2.

If inequality (A.4) is an equality, then (A.5) is also an equality.

PROOF. This lemma is proved using Picard iteration. We first prove the case
when the inequality (A.4) is an equality. Notice that (A.4) (with inequality replaced
by equality) can be written as

g
(
t, x, x′) = J∗

(
t, x, x′) + λ2(L0 � g)

(
t, x, x′;0

)
.
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Let

gn

(
t, x, x′)

=
{
J∗

(
t, x, x′) if n = 0,

J∗
(
t, x, x′) + λ2(L0 � gn−1)

(
t, x, x′;0

)
for n ≥ 1.

(A.7)

Then by the associativity of the operator �, we see that

gn

(
t, x, x′) = J∗

(
t, x, x′) +

n−1∑
k=0

λ2(k+1)(Lk � J∗)
(
t, x, x′;0

)
.

Therefore,

g
(
t, x, x′) = lim

n→∞gn

(
t, x, x′)

= J∗
(
t, x, x′) +

∞∑
k=0

λ2(k+1)(Lk � J∗)
(
t, x, x′;0

)
= J∗

(
t, x, x′) + (Kλ � J∗)

(
t, x, x′;0

)
≤ J∗

(
t, x, x′) + H

(
t;2λ2)

(L0 � J∗)
(
t, x, x′;0

)
,

where the last step is due to (A.3). This proves the equality case.
We proceed to prove the inequality case. Let g∗(t, x, x′) be the solution to (A.4)

with the inequality replaced by equality. Since g satisfies the inequality (A.4), by
denoting F(t, x, x′) := g(t, x, x′) − g∗(t, x, x′), we need only show that F ≤ 0.
Notice that

F
(
t, x, x′) ≤ λ2(L0 � F)

(
t, x, x′;0

)
.

Apply the asymmetric convolution with respect to λ2L0 on the both sides of the
above inequality to see that

λ2(L0 � F)
(
t, x, x′;0

) ≤ λ4(L1 � F)
(
t, x, x′;0

)
,

where we have used the associativity of � (see Lemma B.1 in [8]). Combining the
above two inequalities, we see that

F
(
t, x, x′) ≤ λ4(L1 � F)

(
t, x, x′;0

)
.

In this way, one can show by induction that

F
(
t, x, x′) ≤ λ2(k+1)(Lk � F)

(
t, x, x′;0

)
for all k ∈N.

Now we are going to send k to +∞. Because (see Lemma 2.7 of [8])

0 ≤Lk

(
t, x, x′;y) ≤ 2khk(t)L0

(
t, x, x′),

for all t > 0, x, x′, y ∈ R
d and k ∈ N, we see that∣∣λ2k(Lk � F)

(
t, x, x′;0

)∣∣ ≤ (
2λ2)k

hk(t)
(
L0 � |F |)(

t, x, x′;0
)
.(A.8)



COMPARISON PRINCIPLE FOR SHE ON R
d 1029

By the integrability of g, (L0 � |F |)(t, x, x′;0) < ∞. Lemma 2.1 implies that
H(t;2λ2) = ∑∞

k=0(2λ2)khk(t) < ∞. Hence, the right-hand side of (A.8) goes to
zero as k → ∞. Therefore, F(t, x, x′) ≤ 0, which completes the proof. �

APPENDIX B: SOME TECHNICAL LEMMAS

In this section, we list some technical lemmas that are used in the paper.

LEMMA B.1. If g(t) is a monotone function over [0, T ], then for all β > 0
and t ∈ (0, T ],∫ t

0
g(t − s) exp

(
−2βs(t − s)

t

)
ds

=
∫ t

0
g(s) exp

(
−2βs(t − s)

t

)
ds

(B.1)

≤

⎧⎪⎪⎨⎪⎪⎩
2

∫ t

0
g(s)e−β(t−s) ds if g is nondecreasing,

2
∫ t

0
g(s)e−βs ds if g is nonincreasing.

(B.2)

PROOF. Equality (B.1) is clear by change of variables. We first assume that
g(t) is nondecreasing in [0, T ]. Denote the integral by I . Then

I =
∫ t/2

0
g(s) exp

(
−2βs(t − s)

t

)
ds +

∫ t

t/2
g(s) exp

(
−2βs(t − s)

t

)
ds

≤
∫ t/2

0
g(s) exp(−βs)ds +

∫ t

t/2
g(s) exp

(−β(t − s)
)
ds

≤
∫ t

t/2
g(t − s) exp

(−β(t − s)
)

ds +
∫ t

t/2
g(s) exp

(−β(t − s)
)
ds

≤ 2
∫ t

t/2
g(s) exp

(−β(t − s)
)

ds

≤ 2
∫ t

0
g(s) exp

(−β(t − s)
)

ds.

If g is nonincreasing in [0, T ], we simply replace the above g(s) by g(t −s) thanks
to (B.1). This proves Lemma B.1. �

LEMMA B.2. Let Rε be defined in (6.4). If f satisfies (1.4) with α = 1, then
there exists a constant C > 0 such that for all 0 ≤ s, ε ≤ t and x ∈ R

d ,∫∫
R2d

dy1 dy2f (y1 − y2)
(
Rε(t − s, ·) ∗ G(ε, ·))(x − y1)

× (
Rε(t − s, ·) ∗ G(ε, ·))(x − y2) ≤ C.
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PROOF. Denote the integral by I . Using the Fourier transform we have

I ≤
∫
Rd

e− 2(t−s)
ε

∞∑
n,m=1

( t−s
ε

)n

n!
( t−s

ε
)m

m! e− (n+m)ε
2 |ξ |2 f̂ (dξ)

≤ Ce− 2(t−s)
ε

∞∑
n,m=1

(
t − s

ε

)m+n 1

n!m! .

Letting n + m = k and using the fact that

k−1∑
n=1

1

n!(k − n)! = 1

k!
(
2k − 2

)
,

we see that the above double sum is equal to

∞∑
k=1

k−1∑
n=1

(
t − s

ε

)k 1

n!(k − n)! ≤
∞∑

k=1

(
t − s

ε

)k 2k

k! ≤ e
2(t−s)

ε − 1,

which proves Lemma B.2. �

LEMMA B.3. There exists a finite constant C > 0 such that

(B.3)
∫
Rd

∣∣Rε(t, x) − G(t, x)
∣∣ dx ≤ e−t/ε + C

(
ε

t

)1/2

and

(B.4)
∫
Rd

∣∣G(t + ε, x) − G(t, x)
∣∣ dx ≤ C log

(
1 + ε

t

)
,

for all ε > 0 and t > 0.

PROOF. Because | ∂
∂t

G(t, x)| ≤ Ct−1G(2t, x), we see that for any t and t ′
such that 0 < t ≤ t ′,∫

Rd

∣∣G(
t ′, x

) − G(t, x)
∣∣ dx ≤

∫
Rd

dx

∫ t ′

t
ds

∣∣∣∣ ∂

∂s
G(s, x)

∣∣∣∣
≤ C

∫
Rd

dx

∫ t ′

t
dss−1G(2s, x)

≤ C log
(
t ′/t

)
.

The rest of the proof will follow exactly the same lines as those in the proof of
Lemma 8.2 in [7] and we will not repeat here. �

LEMMA B.4. The function g(t, x) := ∫ t
0 (2πs)−d/2 exp(−x2

2s
)ds, for t, x ≥ 0,

satisfies the following properties:
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(1) x �→ g(t, x) is strictly decreasing functions on x ∈ (0,∞).
(2) If d = 1, then g(t, x) does not blow up at x = 0 and g(t, x) ≤ g(t,0) =√
2t/π . If d ≥ 2, then g(t, x) blows up at x = 0.
(3) If d = 1,2, then for all θ > 0 and t > 0,∫

Rd
g

(
t, |x|)θ dx < ∞.(B.5)

(4) If d ≥ 3, then for all 0 < θ < d
d−2 and t > 0, (B.5) holds.

PROOF. (1) It is clear x �→ g(t, x) is nonincreasing on (0,∞) because

∂

∂x
g(t, x) = −

∫ t

0
(2πs)−d/2 x

s
exp

(
−x2

2s

)
ds < 0 for x > 0.

(2) If d = 1, then by (1), we see that g(t, x) ≤ g(t,0) = √
2t/π . By change of

variables z = x2/(2s),

g(t, x) = 1

2πd/2 x2−d
∫ ∞

x2
2t

e−zz
d
2 −2 dz.(B.6)

If d = 2, then the integral in (B.6) blows up as x → 0+. When d ≥ 3,

g(t, x) ≤ 1

2πd/2 x2−d
∫ ∞

0
e−zz

d
2 −2 dz = �(d/2 − 1)

2πd/2 x2−d,(B.7)

which blows up as x → 0+.
(3) If d = 1, for all t > 0 and x ≥ 0,

g(t, x) ≤ 1√
2π

e− x2
2t

∫ t

0

1√
s

ds =
√

2t√
π

e− x2
2t ,

which shows (B.5) for d = 1. If d = 2, then

g(t, x) = 1

2π

∫ ∞
x2/(2t)

e−zz−1 dz.

Then by l’Hopital’s rule,

lim
x→0+

g(t, x)

log(1/x)
= 1

2π
lim

x→0+

−e− x2
2t

2t
x2

x
t

−1/x
= 1

π
.

Hence, this case is proved by noting that for x ≥ 1,

g(t, x) = 1

2π

∫ ∞
x2
2t

e−zz− 3
2 dz ≤ 1

2π

(
x2

2t

)− 3
2

∫ ∞
x2
2t

e−z dz ≤ (2t)3/2

2π
e− x2

2t .

(4) For d ≥ 3, note that there is a constant Cd > 0 which only depends on d

such that z
d
2 −2e−z ≤ Cde− z

2 for all z ≥ 0. Then for x ≥ 1,

g(t, x) = 1

2πd/2 x2−d
∫ ∞

x2
2t

e−zz
d
2 −2 dz ≤ Cd

2πd/2

∫ ∞
x2
2t

e− z
2 dz ≤ Cd

πd/2 e− x2
4t ,
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this shows that for any θ > 0,

(B.8)
∫
|x|≥1

g
(
t, |x|)θ dx < ∞.

The restriction that θ < d
d−2 comes from the integrability on |x| ≤ 1, which is clear

from the upper bound of g(t, x) in (B.7). �

LEMMA B.5. Recall the function g(t, x) is defined in Lemma B.4. Let ψ ∈
Cc(R

d) be an arbitrary mollifier such that
∫
Rd ψ(x)dx = 1. Denote ψε(x) =

ε−dψ(x/ε). For each fixed t > 0, suppose that h : Rd �→ R+ is a nonnegative
and measurable function such that∫

Rd
h(x)g

(
2t, |x|) dx < ∞.

Then the following statements hold:

(1) For any η > 0, there exists φ ∈ Cc(R
d) such that

sup
ε∈(0,

√
t)

∫
Rd

gε

(
t, |x|)∣∣h(x) − φ(x)

∣∣ dx < η,

where gε(t, |x|) = ∫
Rd g(t, |y|)ψε(x − y)dy.

(2) By denoting hε(x) = (h ∗ ψε)(x), we have that

lim
ε→0

∫
Rd

g
(
t, |x|)∣∣h(x) − hε(x)

∣∣ dx = 0.

PROOF. Without loss of generality, we may assume that t = 1.
(1) Fix η > 0. It is clear that for some constant C > 0, we have

ψ(x) ≤ CG(1, x) for all x ∈ R
d .

Hence, ψε(x) ≤ CG(ε2, x), which implies that

gε

(
1, |x|) ≤ C

∫
Rd

dyG
(
ε2, x − y

) ∫ 1

0
dsG(s, y)

= C

∫ 1

0
dsG

(
s + ε2, x

)
(B.9)

= C

∫ 1+ε2

ε2
dsG(s, x) ≤ Cg

(
2, |x|),

where the last inequality is due to the definition of g(t, x) and ε ∈ (0,1). Since h

is nonnegative, it is known that one can find a monotone nondecreasing sequence
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{sj } of simple functions such that sj (x) ↑ h(x) pointwise; see, for example, Theo-
rem 1.44 in [1]. Hence, by the dominated convergence theorem,

sup
ε∈(0,1)

∫
Rd

gε

(
1, |x|)∣∣h(x) − sj (x)

∣∣ dx

< C

∫
Rd

g
(
2, |x|)∣∣h(x) − sj (x)

∣∣ dx → 0

as j → ∞. Therefore, for some s ∈ {sj },
sup

ε∈(0,1)

∫
Rd

gε

(
1, |x|)∣∣h(x) − s(x)

∣∣ dx ≤ η/2.

Now we choose and fix q > 1 such that

(B.10) C(g, d, q) :=
∫
Rd

g
(
t, |x|)q dx < ∞.

This is possible thanks to Lemma B.4: q > 1 can be any number for d = 1,2 and
q ∈ (1, d

d−2) for d ≥ 3. Since s is a simple function with bounded support, by
Lusin’s theorem (see, e.g., Theorem 1.42 (f) in [1]) there exists φ ∈ Cc(R

d) such
that ∣∣φ(x)

∣∣ ≤ ‖s‖L∞(Rd ) for all x ∈R
d

and

Vol
({

x ∈ R
d : φ(x) �= s(x)

}) ≤ ηp(
4C‖s‖L∞(Rd )C(g, d, q)1/q)−p

,

where 1/p + 1/q = 1 and C is as in (B.9). Thus, using (B.9),

sup
ε∈(0,1)

∫
Rd

gε

(
1, |x|)∣∣s(x) − φ(x)

∣∣ dx

≤ C

∫
Rd

g
(
2, |x|)∣∣s(x) − φ(x)

∣∣ dx

≤ 2C‖s‖L∞(Rd )

∫
Rd

1{x∈Rd :φ(x) �=s(x)}g
(
2, |x|) dx

≤ 2C‖s‖L∞(Rd )

(∫
Rd

1{x∈Rd :φ(x) �=s(x)} dx

) 1
p

(∫
Rd

g
(
2, |x|)q dx

) 1
q

≤ η

2
.

(2) For any η > 0, we can write∫
Rd

∣∣hε(x) − h(x)
∣∣g(

1, |x|) dx

=
∫
Rd

∣∣∣∣∫
Rd

ψε(x − y)
[
h(y) − h(x)

]
dy

∣∣∣∣g(
1, |x|) dx



1034 L. CHEN AND J. HUANG

=
∫
Rd

∣∣∣∣∫
Rd

ψε(x − y)
[
h(y) − φ(y)

]
dy

∣∣∣∣g(
1, |x|) dx

+
∫
Rd

∣∣∣∣∫
Rd

ψε(x − y)
[
φ(y) − φ(x)

]
dy

∣∣∣∣g(
1, |x|) dx

+
∫
Rd

∣∣∣∣∫
Rd

ψε(x − y)
[
φ(x) − h(x)

]
dy

∣∣∣∣g(
1, |x|) dx

=: I1 + I2 + I3.

For I1, choose φ ∈ Cc(R
d) according to (1), such that I1 <

η
3 . From the proof

of (1), it is obvious that with the same choice of φ, I3 <
η
3 . For I2, since ψ is

compactly supported, we may choose ε0 > 0 such that whenever 0 < ε < ε0, we
have I2 <

η
3 because of the uniform continuity of φ. �
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